Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2019 № 2 ELECTRONIC AUTOMATED WORK PLACES FOR BIOTECHNOLOGY Klyuchko O.M. , Aralova A.A., Aralova N.I.
Print PDF

ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)

"Biotechnologia Acta" V. 12, No 2, 2019
https://doi.org/10.15407/biotech12.02.005
Р. 5-26, Bibliography 179, English
Universal Decimal Classification: 004:591.5:612:616-006

ELECTRONIC AUTOMATED WORK PLACES FOR BIOTECHNOLOGY

Klyuchko O.M. 1, Aralova A.A.2, Aralova N.I.2

1 Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv
2 Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv

The purpose of the work was to analyze data about the construction of electronic automated work places for organization of more perfect ones for biotechnology. Methods of program and mathematic simulation, imitation modeling were used for these works. The information about some prototypes of electronic automated work places constructed for biology and linked sciences in Ukraine during the last 25–30 years was discussed. The results of some automated work places constructed by the authors were presented. In conclusion the observed experience was summarized and the set of recommendations for its practical implementation were done.

Key words: electronic automated work places, bioinformatics, electronic information systems, databases.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019

  • References
    • 1. Klyuchko O. M. Information and computer technologies in biology and medicine. Kyiv: NAU-druk. 2008, 252 p. (In Ukrainian).

      2. Aralova N. I., Klyuchko O. M., Shakhlina L. Ya.-H. Parameters of athlete respiratory system dependence on organism hormonal status during hypoxic mixtures inhalation: research on mathematical models. SciFed J. Sports Med., USA. 2018, 1 (2). http://scifedpublishers.com/fulltext/parameters-of-athlete-respiratory-systemdependence-on-organism-hormonal-statusduring-hypoxic-mixtures-inhalation-researchon-mathematical-models/22385#Figures

      3. Klyuchko O. М. On the mathematical methods in biology and medicine. Biotechnol. acta. 2017, 10 (3), 31-40. https://doi.org/10.15407/biotech10.03.031

      4. Klyuchko O. М. Application of artificial neural networks method in biotechnology. Biotechnol. acta. 2017, 10 (4), 5-13. https://doi.org/10.15407/biotech10.04.005

      5. Klyuchko O. М. Cluster analysis in biotechnology. Biotechnol. acta. 2017, 10 (5), 5-18. https://doi.org/10.15407/biotech10.05.005

      6. Klyuchko O. М. Technologies of brain images processing. Biotechnol. acta. 2017, 10 (6), 5-17. https://doi.org/10.15407/biotech10.05.005

      7. Klyuchko O. М., Onopchuk Yu. M. Some trends in mathematical modeling for biotechnology. Biotechnol. acta. 2018, 11 (1), 39-57. https://doi.org/10.15407/biotech11.01.039

      8. Klyuchko O. М. Electronic information systems in biotechnology. Biotechnol. acta. 2018, 11 (2), 5-22. https://doi.org/10.15407/biotech11.05.005

      9. Klyuchko O. М. Information computer technologies for using in biotechnology: electronic medical information systems. Biotechnol. acta. 2018, 11 (3), 5-26.
      https://doi.org/10.15407/biotech11.03.005

      10. Schnase J. L., Cushing J., Frame M. Information technology challenges of biodiversity and ecosystems informatics. Inform. Syst. 2003, 28 (4), 339-345.
      https://doi.org/10.1016/S0306-4379(02)00070-4

      11. Piatigorsky B. Ya., Zaytman G. A., Cherkassky V. L., Chinarov V. A. Automated electrophysiological experiment. Kyiv: Naukova dumka. 1985, 214 p. (In Russian).

      12. Patent 1370136 USSR, С12N 5/00. The method for dissociation of hippocampal cells. Klyuchko E. М., Tzyndrenko A. Ya. Priority: 31. 01. 1986; Issued: 30. 01. 1988, Bull. No 4, 3 p.

      13. Hardy P. B., Sparks T. H., Isaak N. J. Specialism for larval and adult consumer resources among Brittish butterflies: implications for conservation. Biol. Conserv. 2007, 138 (3-4), 440-452.
      https://doi.org/10.1016/j.biocon.2007.05.014

      14. Dennis R. L. H., Shreeve T. G., Sparks T. H. A comparison of geographical and neighbourhood models for improving atlas databases. The case of the French butterfly atlas. Biol. Conserv, 2002, 108 (2), 143-159. https://doi.org/10.1016/S0006-3207(02)00101-5

      15. Klyuchko O. M., Paskivsky A. O., Sheremet D. Y. Computer modeling of some nanoelements for radio and television systems. Electronics and control systems. 2012, 3 (33), 102-107. (In Ukrainian). https://doi.org/10.18372/1990-5548.33.5589

      16. Klyuchko O. M., Hayrutdinov R. R. Modeling of electrical signals propagation in neurons and its nanostructures. Electronics and control systems. 2011, 2 (28), 120-124. (In Ukrainian).
      https://doi.org/10.18372/1990-5548.28.870

      17. Trinus K. F., Klyuchko E. M. Mediators influence on motoneurons retrogradly marked by primulin. Physiol. J. 1984. 30 (6), 730-733 (In Russian).

      18. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Algorithmic and program support for optimization of interval hypoxic training modes selection of pilots. Electronics and control systems. 2017, 2 (52), 85-93. https://doi.org/10.18372/1990-5548.52.11882

      19. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Mathematic and program models for investigation of reliability of operator professional activity in "Human-Machine" systems. Electronics and control systems. 2017, 1 (51), 105-113. https://doi.org/10.18372/1990-5548.51.11712

      20. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Mathematical model for research of organism restoring for operators of continuously interacted systems. Electronics and control systems. 2016, 3 (49), 100-105. https://doi.org/10.18372/1990-5548.49.11245

      21. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Investigation of reliability of operators work at fluctuating temperature conditions. Electronics and control systems. 2016, 2 (48), 132-139. https://doi.org/10.18372/1990-5548.48.11227

      22. Plakhotnij S. A., Klyuchko O. M., Krotino va M. V. Information support for automatic industrial environment monitoring systems. Electronics and control systems. 2016, 1 (47), 19-34.
      https://doi.org/10.18372/1990-5548.47.10266

      23. Onopchuk Yu. M., Aralova N. I., Klyuchko O. M., Beloshitsky P. V. Mathematic models and integral estimation of organism systems reliability in extreme conditions. Electronics and control systems. 2015, 4 (46), 109-115. https://doi.org/10.18372/1990-5548.46.9978

      24. Onopchuk Yu. M., Aralova N. I., Klyuchko O. M.,Beloshitsky P. V. Integral estimations of human reliability and working capacity in sports wrestling. Journal of the Engineering Academy. 2015, V. 3, P. 145-148. (In Russian).

      25. Klyuchko O. M., Shutko V. N., Navrotskyi D. O., Mikolushko A. M. The set of program models for ecological monitoring technical system based on principles of biophysics. Electronics and control systems. 2014, 4 (42), 135-142. https://doi.org/10.18372/1990-5548.42.8834

      26. Klyuchko O. M., Sheremet D. Yu. Computer simulation of biological nanogenerator functions. Electronics and control systems. 2014, 2 (40), 103-111.
      https://doi.org/10.18372/1990-5548.40.7447

      27. Klyuchko O. M., Shutko V. N. Computer modeling of auto-oscillating phenomena in neuron complexes. Electronics and control systems. 2014, 1 (39), 127-132. https://doi.org/10.18372/1990-5548.39.7349

      28. Klyuchko O. M., Sheremet D. Yu. Computer modeling of biologic voltage-activated nanostructures. Electronics and control systems. 2014, 1 (39), 133-139. https://doi.org/10.18372/1990-5548.39.7350

      29. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. M. Radiation damage of organism and its correction in conditions of adaptation to highmountain meteorological factors. Bul. NAU. 2010, N 1, P. 224-231. (In Ukrainian).

      30. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu., Makarenko M. V. Estimation of psychophysiological functions of a person and operator work in extreme conditions. Bul. NAU. 2009, N 3, P. 96-104. (In Ukrainian).

      31. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu., Kolchinska A. Z. Results of research of higher nervous activity problems by Ukrainian scientists in Prielbrussie. Bul. NAU. 2009, N 2, P. 105-112. (In Ukrainian).

      32. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of structural and functional interdependencies by Ukrainian scientists in Prielbrussie. Bul. NAU. 2009, N 1, P. 61-67. (In Ukrainian).

      33. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of highlands factors influence on health and longevity by Ukrainian scientists in Prielbrussie. Bul. NAU. 2008, N 4, P. 108-117. (In Ukrainian).

      34. Onopchuk Yu. M., Klyuchko O. M., Beloshitsky P. V. Development of mathematical models basing on researches of Ukrainian scientists at Elbrus. Bul. NAU. 2008, N 3, P. 146-155. (In Ukrainian). https://doi.org/10.18372/2306-1472.36.1609

      35. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of adaptation problems by Ukrainian scientists in Prielbrussie. Bul. NAU. 2008, N 1, P. 102-108. (In Ukrainian).

      36. Beloshitsky P. V., Klyuchko O. M., Onop chuk Yu. Results of research of hypoxia problems by Ukrainian scientists in Elbrus region. Bul. NAU. 2007, N 3-4, P. 44-50. (In Ukrainian).

      37. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of medical and biological research of Ukrainian scientists at Elbrus. Bul. NAU. 2007, N 2, P. 10-16. (In Ukrainian).

      38. Belan P. V., Gerasimenko O. V., Tepikin A. V., Petersen O. H. Localization of Ca++ extrusion sites in pancreatic acinar cells. J. Biol. Chem. 1996, V. 271, P. 7615-7619.
      https://doi.org/10.1074/jbc.271.13.7615

      39. Belan P., Gardner J., Gerasimenko O. Extracellular Ca++ spikes due to secretory events in salivary gland cells. J. Biol. Chem. 1998, V. 273, P. 4106-4111. https://doi.org/10.1074/jbc.273.7.4106

      40. Jabs R., Pivneva T., Huttmann K. Synaptic transmission onto hyppocampal glial cells with hGFAP promoter activity. J. Cell Sci. 2005, V. 118, P. 3791-3803. https://doi.org/10.1242/jcs.02515

      41. Linne C. Fauna Suecica. Stocholmiac. 1761, 578 p.

      42. Klyuchko Z. F. Noctuidae of the Western regions of Ukraine. Kyiv: KyivUniv. Publ. 1963, 176 p. (In Russian).

      43. Baert P., Meesen G., De Schynkel S., Poffijn A., Oostveldt P. V. Simultaneous in situ profiling of DNA lesion endpoints based on image cytometry and a single cell database approach. Micron. 2005, 36 (4), 321-330. https://doi.org/10.1016/j.micron.2005.01.005

      44. Berks G., Ghassemi A., von Keyserlingk D. G. Spatial registration of digital brain atlases based on fuzzy set theory. Comp. Med. Imag. Graph. 2001, 25 (1), 1-10. https://doi.org/10.1016/S0895-6111(00)00038-0

      45. Nowinski W. L., Belov D. The Cerefy Neuroradiology Atlas: a Talairach-Tournoux atlas-based tool for analysis of neuroimages available over the internet. NeuroImage. 2003, 20 (1), 50-57. https://doi.org/10.1016/S1053-8119(03)00252-0

      46. Chaplot S., Patnaik L. M., Jagannathan N. R. Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed. Signal Proc. Contr. 2006, 1 (1), 86-92. https://doi.org/10.1016/j.bspc.2006.05.002

      47. Kovalev V. A., Petrou M., Suckling J. Detection of structural differences between the brains of schizophrenic patients and controls. Psych. Res.: Neuroimaging. 2003, 124 (3), 177-189. https://doi.org/10.1016/S0925-4927(03)00070-2

      48. Araújo T. Classification of breast cancer histology images using Convolutional Neural Networks. PloS One. 2017, 12 (6), e0177544.
      https://doi.org/10.1371/journal.pone.0177544

      49. Vecht-Lifshitz S. E., Ison A. P. Biotechnological applications of image analysis: present and future prospects. J. Biotechnol. 1992, 23 (1), 1-18. https://doi.org/10.1016/0168-1656(92)90096-R

      50. Toga A. W., Thompson P. M. The role of image registration in brain mapping. Image Vis. Comput. 2001, 19 (1-2), 3-24. https://doi.org/10.1016/S0262-8856(00)00055-X

      51. Carro S. A., Scharcanski J. A framework for medical visual information exchange on the WEB. Computers in Biology and Medicine. 2006, V. 4, P. 327-338. https://doi.org/10.1016/j.compbiomed.2004.10.004

      52. Chakravarty M. M., Bertrand G., Hodge C. P., Sadikot A. F., Collins D. L. The creation of a brain atlas for image guided neurosurgery using serial histological data. NeuroImage. 2006, 30 (2), 359-376. https://doi.org/10.1016/j.neuroimage.2005.09.041

      53. Dikshit A., Wu D., Wu C., Zhao W. An online interactive simulation system for medical imaging education. Comp. Med. Imag. Graph. 2005, 29 (6), 395-404. https://doi.org/10.1016/j.compmedimag.2005.02.001

      54. Singh R., Schwarz N., Taesombut N., Lee D., Jeong B., Renambot L., Lin A. W., West R., Otsuka H., Naito S., Peltier S. T., Martone M. E., Nozaki K., Leigh J., Ellisman M. H. Real-time multi-scale brain data acquisition, assembly, and analysis using an end-to-end. OptIPuter Future Generation Computer Systems. 2006, V. 22, P. 1032-1039.
      https://doi.org/10.1016/j.future.2006.03.017

      55. Stefanescu R., Pennec X., Ayache N. Grid powered nonlinear image registration with locally adaptive regularization. Med. Image Anal. 2004, 8 (3), 325-342.
      https://doi.org/10.1016/j.media.2004.06.010

      56. Ma Y., Hof P. R., Grant S. C., Blackband S. J., Bennett R., Slatest L., McGuigan M. D., Benveniste H. A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience. 2005, 135 (4), 1203-1215. https://doi.org/10.1016/j.neuroscience.2005.07.014

      57. Yu-Len Huang. Computer-aided Diagnosis Using Neural Networks and Support Vector Machines for Breast Ultrasonography. J. Med. Ultrasound. 2009, 17 (1), 17-24.
      https://doi.org/10.1016/S0929-6441(09)60011-4

      58. Prachi Damodhar Shahare, Ram Nivas Giri. Comparative Analysis of Artificial Neural Network and Support Vector Machine Classification for Breast Cancer Detection. International Research Journal of Engineering and Technology (IRJET). 2015, 2 (9).

      59. Natrajan R., Sailem H., Mardakheh F. K., Garcia M. F., Tape C. G., Dowsett M., Bakal C., Yuan Y. Microenvironmental heterogeneity parallels breast cancer progression: a histology-genomic integration analysis. PLoS Med. 2016. 13 (2), e1001961. https://doi.org/10.1371/journal.pmed.1001961

      60. Klyuchko O. M. Brain images in information systems for neurosurgery and neurophysiology. Electronics and control systems. 2009, 3 (21), 152-156. (In Ukrainian).
      https://doi.org/10.18372/1990-5548.21.733

      61. Klyuchko O. M. Using of images' databases for diagnostics of pathological changes in organism tissues. Electronics and control systems. 2009, 2 (20), 62-68. (In Ukrainian).
      https://doi.org/10.18372/1990-5548.20.687

      62. Klyuchko O. M. Elements of different level organization of the brain as material for electronic databases with images. Electronics and control systems. 2009, 1 (19), 69-75. (In Ukrainian). https://doi.org/10.18372/1990-5548.19.665

      63. Steimann F. On the representation of roles in object-oriented and conceptual modelling. Data& Knowedge Engin. 2000, 35 (1), 83-106. https://doi.org/10.1016/S0169-023X(00)00023-9

      64. Klyuchko O. M., Managadze Yu. L., Pashkivsky A. O. Program models of 2D neuronal matrix for ecological monitoring and images' coding. Bulletin of the Engineering Academy. 2013, No 3-4, P. 77-82. (In Ukrainian).

      65. Klyuchko O. M., Piatchanina T. V., Mazur M. G. Combined use of relation databases of images for diagnostics, therapy and prognosis of oncology diseases. "Integrated robototechnic complexes". Х ІІRTC-2017 Conference Proceedings. P. 275-276. (In Ukrainian).

      66. Shutko V. M., Shutko O. M., Kolganova O. O. Methods and means of compression of information. Kyiv: Nauk. dumka. 2012, 168 p. (In Ukrainian).

      67. Jecheva V., Nikolova E. Some clusteringbased methodology applications to anomaly intrusion detection systems. Int. J. Secur. Appl. 2016, 10 (1), 215-228. https://doi.org/10.14257/ijsia.2016.10.1.20

      68. Iakovidis D. K., Maroulis D. E., Karkanis S. A. Texture multichannel measurements for cancer precursors' identification using support vector machines. Measurement. 2004, V. 36, P. 297-313. https://doi.org/10.1016/j.measurement.2004.09.010

      69. Nguyen H. Q., Carrieri-Kohlman V., Rankin S. H., Slaughter R., Stulbarg M. S. Internet-based patient education and support interventions: a review of evaluation studies and directions for future research. Comp. Biol. Med. 2004, 34 (2), 95-112. https://doi.org/10.1016/S0010-4825(03)00046-5

      70. Jézéquel P., Loussouarn L., Guérin-Charbonnel C., Campion L., Vanier A., Gouraud W., Lasla H., Guette C., Valo I., Verrièle V. Campone M. Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response. Breast Cancer Res. 2015, 17 (1), 43. https://doi.org/10.1186/s13058-015-0550-y

      71. Bozhenko V. K. Multivariable analysis of laboratory blood parameters for obtaining diagnostic information in experimental and clinical oncology. The dissertation author's abstract on scientific degree editions. Dc. Med. Study. Moscow. 2004. (In Russian).

      72. Ko J. H., Ko E. A., Gu W., Lim I., Bang H., Zhou T. Expression profiling of ion channel genes predicts clinical outcome in breast cancer. Mol. Cancer. 2013, 12 (1), 106. https://doi.org/10.1186/1476-4598-12-106

      73. Kawai M., Nakashima A., Kamada S., Kikkawa U. Midostaurin preferentially attenuates proliferation of triple-negative breast cancer cell lines through inhibition of Aurora kinase family. J. Biomed. Sci. 2015, 22 (1), 48. https://doi.org/10.1186/s12929-015-0150-2

      74. Uhr K., Wendy J. C., Prager-van der Smissen, Anouk A. J. Heine, Bahar Ozturk, Marcel Smid, Hinrich W. H. Göhlmann, Agnes Jager, John A. Foekens, John W. M. Martens. Understanding drugs in breast cancer through drug sensitivity screening. SpringerPlus. 2015, 4 (1), 611. https://doi.org/10.1186/s40064-015-1406-8

      75. Onopchuk Yu. M., Biloshitsky P. V., Klyuchko O. M. Development of mathematical models based on the results of researches of Ukrainian scientists at Elbrus. Bul. NAU. 2008, N 3, P. 146-155. (In Ukrainian). https://doi.org/10.18372/2306-1472.36.1609

      76. Ankur Poudel, Dhruba Bahadur Thapa, Manoj Sapkota. Cluster Analysis of Wheat (Triticum aestivum L.) Genotypes Based Upon Response to Terminal Heat Stress. Int. J. Appl. Sci. Biotechnol. 2017, 5 (2), 188-193. https://doi.org/10.3126/ijasbt.v5i2.17614

      77. Zaslavsky L., Ciufo S., Fedorov B., Tatusova T. Clustering analysis of proteins from microbial genomes at multiple levels of resolution. BMC Bioinform. 2016, 17 (8), 276. Published online 2016 Aug 31. https://doi.org/10.1186/s12859-016-1112-8

      78. Zhou J., Richardson A. J., Rudd K. E. EcoGene-RefSeq: EcoGene tools applied to the RefSeq prokaryotic genomes. Bioinformatics. 2013, 29 (15), 1917-1918. Published: 04 June 2013. https://doi.org/10.1093/bioinformatics/btt302

      79. Zhang J., Wu G., Hu X., Li S., Hao S. A Parallel Clustering Algorithm with MPI - MKmeans. J. Comput. 2013, 8 (1), 10-17. https://doi.org/10.1109/PAAP.2011.17

      80. Tatusova T., Zaslavsky L., Fedorov B., Haddad D., Vatsan A., Ako-adjei D., Blinkova O., Ghazal H. Protein Clusters. The NCBI Handbook [Internet]. 2nd edition. Available at https://www.ncbi.nlm.nih.gov/books/NBK242632

      81. Anderson J. G. Evaluation in health informatics: computer simulation. Computers in Biology and Medicine. 2002, 32 (3), 151-164. https://doi.org/10.1016/S0010-4825(02)00012-4

      82. Aruna P., Puviarasan N., Palaniappan B. An investigation of neuro-fuzzy systems in psychosomatic disorders. Exp. Syst. Appl. 2005, 28 (4), 673-679. https://doi.org/10.1016/j.eswa.2004.12.024

      83. Bange M. P., Deutscher S. A., Larsen D., Linsley D., Whiteside S. A handheld decision support system to facilitate improved insect pest management in Australian cotton systems. Comp. Electron. Agricult. 2004, 43 (2), 131-147. https://doi.org/10.1016/j.compag.2003.12.003

      84. Beaulieu A. From brainbank to database: the informational turn in the study of the brain. Stud. Hist. Phil. Biol. Biomed. Sci. 2004, V. 35, P. 367-390. https://doi.org/10.1016/j.shpsc.2004.03.011

      85. Horn W. AI in medicine on its way from knowledge-intensive to data-intensive systems. Artificial Intelligence in Medicine. Elsevier. 2001, 23 (1), 512. https://doi.org/10.1016/S0933-3657(01)00072-0

      86. Brake I. Unifying revisionary taxonomy: insect exemplar groups. Abstr. XV SEL Congr. Berlin (Germany). 2007.

      87. Braxton S. M., Onstad D. W., Dockter D. E., Giordano R., Larsson R., Humber R. A. Description and analysis of two internet-based databases of insect pathogens: EDWIP and VIDIL. J. Invertebr. Pathol. 2003, 83 (3), 185-195. https://doi.org/10.1016/S0022-2011(03)00089-2

      88. Breaux A., Cochrane S., Evens J., Martindaled M., Pavlike B., Suera L., Benner D. Wetland ecological and compliance assessments in the San Francisco Bay Region, California, USA. J. Environm. Manag. 2005, 74 (3), 217-237. https://doi.org/10.1016/j.jenvman.2004.08.017

      89. Budura A., Cudré-Mauroux P., Aberer K. From bioinformatic web portals to semantically integrated Data Grid networks. Fut. Gener.Comput. Syst. 2007, 23 (3), 281-522. https://doi.org/10.1016/j.jenvman.2004.08.017

      90. Burns G., Stephan K. E., Ludäscher B., Gupta A., Kötter R. Towards a federated neuroscientific knowledge management system using brain atlases. Neurocomputing. 2001, V. 3840, P. 1633-1641. https://doi.org/10.1016/S0925-2312(01)00520-3

      91. Butenko S., Wilhelm W. E. Clique-detection models in computational biochemistry and genomics. Eur. J. Oper. Res. 2006, 173 (1), 117. https://doi.org/10.1016/j.ejor.2005.05.026

      92. Carro S. A., Scharcanski J. Framework for medical visual information exchange on the WEB. Comp. Biol. Med. 2006, 36 (4), 327-338. https://doi.org/10.1016/j.compbiomed.2004.10.004
      https://doi.org/10.1016/j.compbiomed.2004.10.004

      93. Chau M., Huang Z., Qin J., Zhou Y., Chen H. Building a scientific knowledge web portal: The NanoPort experience. Decision Support Systems. 2006. https://doi.org/10.1016/j.dss.2006.01.004

      94. Chen M., Hofestädt R. A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. J. Biomed. Inform. 2006, 39 (2), 147-159. https://doi.org/10.1016/j.jbi.2005.05.005

      95. Chli M., De Wilde P. Internet search: Subdivisionbased interactive query expansion and the soft semantic web. Appl. Soft Comput. 2006. https://doi.org/10.1016/j.asoc.2005.11.003

      96. Despont-Gros C., Mueller H., Lovis C. Evaluating user interactions with clinical information systems: A model based on human - computer interaction models. J. Biomed. Inform. 2005, 38 (3), 244-255. https://doi.org/10.1016/j.jbi.2004.12.004

      97. Marios D., Dikaiakos M. D. Intermediary infrastructures for the World Wide Web. Comp. Networks. 2004, V. 45, P. 421-447. https://doi.org/10.1016/j.comnet.2004.02.008

      98. Dimitrov S. D., Mekenyan O. G., Sinks G. D., Schultz T. W. Global modeling of narcotic chemicals: ciliate and fish toxicity. J. Mol. Struc.: Theochem. 2003, 622 (12), 63-70. https://doi.org/10.1016/S0166-1280(02)00618-8

      99. Dong Y., Zhuang Y., Chen K., Tai X. A hierarchical clustering algorithm based on fuzzy graph connectedness. Fuzzy Sets. Syst. 2006, V. 157, P. 1760-1774. https://doi.org/10.1016/j.fss.2006.01.001

      100. Duan Y., Edwards J. S., Xu M. X. Web-based expert systems: benefits and challenges. Inf. Manag. 2005, 42 (6), 799-811. https://doi.org/10.1016/j.im.2004.08.005

      101. Essen van D. C. Windows on the brain: the emerging role of atlases and databases in neuroscience. Curr. Opin. Neurobiol. 2002, 12 (5), 574-579. https://doi.org/10.1016/S0959-4388(02)00361-6

      102. Fellbaum C., Hahn U., Smith B. Towards new information resources for public health From Word Net to Medical Word Net. J. Biomed. Inform. 2006, 39 (3), 321-332. https://doi.org/10.1016/j.jbi.2005.09.004

      103. Ferraris M., Frixione P., Squarcia S. Network oriented radiological and medical archive. Comp. Physics Commun. 2001, V. 140, P. 226-232. https://doi.org/10.1016/S0010-4655(01)00273-9

      104. Flower D. R., Attwood T. K. Integrative bioinformatics for functional genome annotation: trawling for G protein-coupled receptors. Reviews 55 Semin. Cell. Dev. Biol. 2004, 15 (6), 693-701. https://doi.org/10.1016/j.semcdb.2004.09.008

      105. Fink E., Kokku P. K., Nikiforou S., Hall L. O., Goldgof D. B., Krischer J. P. Selection of patients for clinical trials: an interactive webbased system. Art. Intell. Med. 2004, 31 (3), 241-254. https://doi.org/10.1016/j.artmed.2004.01.017

      106. Fitzpatrick M. J., Ben-Shahar Y., Smid H. M., Vet L. E., Robinson G. E., Sokolowski M. B. Candidate genes for behavioural ecology. Trend Ecol. Evol. 2005, 20 (2), 96-104. https://doi.org/10.1016/j.tree.2004.11.017

      107. Fox J., Alabassi A., Patkar V., Rose T., Black E. An ontological approach to modeling tasks and goals. Comp. Biol. Med. 2006, V. 36, P. 837-856. https://doi.org/10.1016/j.compbiomed.2005.04.011

      108. Fu Zetian, Xu Feng, Zhou Yun, Shuan X. Z. Pig-vet: a web-based expert system for pig disease diagnosis. 2006. https://doi.org/10.1016/j.eswa.2005.01.011

      109. Gaulton A., Attwood T. K. Bioinformatics approaches for the classification of G-protein-coupled receptors. Curr. Opin. Pharmacol. 2003, 3 (2), 114-120. https://doi.org/10.1016/S1471-4892(03)00005-5

      110. Palla K., Ghahramani Z., Knowles D. A. A nonparametric variable clustering model. Adv. Neural Inform. Proc. Syst. 2012, P. 2987-2995

      111. Curtis C., Shah S. P., Chin S. F., Turashvili G., Rueda O. M., Dunning M. J., Speed D., Lynch A. G., Samarajiwa S., Yuan Y., Gräf S., Ha G., Haffari G., Bashashati A., Russell R., McKinney S., Langerød A., Green A., Provenzano E., Wishart G., Pinder S., Watson P., Markowetz F., Murphy L., Ellis I., Purushotham A., Dale A. L., Brenton J. D., Tavaré S., Caldas C., Aparicio S. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012, 486 (7403), 346-352.
      https://doi.org/10.1038/nature10983

      112. Proceedings Of the second EuroLOOP Workshop, Amsterdam, 27-30 March 1995.

      113. Graham C. H., Ferrier S., Huettman F., Moritz C., Peterson A. T. New developments in museum-based informatics and applications in biodiversity analysis. Trend. Ecol. Evol. 2004, 19 (9), 497-503. https://doi.org/10.1016/j.tree.2004.07.006

      114. Anokhin B., Hemmrich G. Zoology www guide. Zoology. 2005, 108 (4), 673-679.
      https://doi.org/10.1016/j.zool.2005.01.001

      115. Hirano S., Sun X., Tsumoto S. Comparison of clustering methods for clinical databases. Inform. Sci. 2004, 159 (34), 155-165. https://doi.org/10.1016/j.ins.2003.03.011

      116. Hong Yu., Hatzivassiloglou V., Rzhetsky A., Wilbur W. J. Automatically identifying gene/protein terms in MEDLINE abstracts. J. Biomed. Inform. 2002, 35 (56), 322-330. https://doi.org/10.1016/S1532-0464(03)00032-7

      117. Bedathur S. J., Haritsa J. R., Sen U. S. The building of BODHI, a bio-diversity database system. Inform. Syst. 2003, 28 (4), 347-367. https://doi.org/10.1016/S0306-4379(02)00073-X

      118. Hsi-Chieh Lee, Szu-Wei Huang, Li E. Y. Mining protein-protein interaction information on the internet. Exp. Syst. Appl. Elsevier. 2006, 30 (1), 142-148. https://doi.org/10.1016/j.eswa.2005.09.083

      119. Young R. Genetic toxicology: web-resources. Toxicology. 2002, 173 (1-2), 103-121.
      https://doi.org/10.1016/S0300-483X(02)00026-4

      120. Johnson S. B., Friedman R. Bridging the gap between biological and clinical informatics in a graduate training program. J. Biomed. Inform. 2007, 40 (1), 59-66. Epub. 2006 Mar 15. https://doi.org/10.1016/j.jbi.2006.02.011

      121. Kaiser M., Hilgetag C. C. Modelling the development of cortical systems networks. Neurocomputing. 2004, V. 5860, P. 297-302. https://doi.org/10.1016/j.neucom.2004.01.059

      122. Kane M. D., Brewer J. L. An information technology emphasis in biomedical informatics education. J. Biomed. Inform. 2007, 40 (1), 67-72. https://doi.org/10.1016/j.jbi.2006.02.006

      123. Kannathal N., Acharya U. R., Lim C. M., Sadasivan P. K. Characterization of EEG. A comparative study. Comp. Meth. Progr. Biomed. 2005, 80 (1), 17-23. https://doi.org/10.1016/j.cmpb.2005.06.005

      124. Koh W., McCormick B. H. Brain micro structure database system: an exoskeleton to 3D reconstruction and modelling. Neurocomputing. 2002, V. 4446, 1099-1105. https://doi.org/10.1016/S0925-2312(02)00426-5

      125. Koh W., McCormick B. H. Registration of a 3D mouse brain atlas with brain microstructure data. Neurocomputing. 2003, V. 5254, P. 307-312. https://doi.org/10.1016/S0925-2312(02)00793-2

      126. Kulish V., Sourin A., Sourina O. Human electro encephalograms seen as fractal time series: Mathematical analysis and visualization. Comp. Biol. Med. 2006, 36 (3), 291-302. https://doi.org/10.1016/j.compbiomed.2004.12.003

      127. Lubitz von D., Wickramasinghe N. Networkcentric healthcare and bioinformatics: Unified operations within three domains of knowledge. Exp. Syst. Appl. 2006, 30 (1), 11-23. https://doi.org/10.1016/j.eswa.2005.09.069

      128. Martin-Sanchez F., Iakovidis I., Norager S., Maojo V., de Groen P., Van der Lei J., Jones T., Abraham-Fuchs K., Apweiler R., Babic A., Baud R., Breton V., Cinquin P., Doupi P., Dugas M., Eils R., Engelbrecht R., Ghazal P., Jehenson P., Kulikowski C., Lampe K., De Moor G., Orphanoudakis S., Rossing N., Sarachan B., Sousa A., Spekowius G., Thireos G., Zahlmann G., Zvárová J., Hermosilla I., Vicente F. J. Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care. J. Biomed. Inform. 2004, 37 (1), 30-42. https://doi.org/10.1016/j.jbi.2003.09.003

      129. Masseroli M., Visconti A., Bano S. G. Pinciroli F. He@lthCo-op: a web-based system to support distributed healthcare co-operative work. Comp. Biol. Med. 2006, 36 (2), 109-127. https://doi.org/10.1016/j.compbiomed.2004.09.005

      130. Moon S., Byun Y., Han K. FSDB: A frameshift signal database. Comp. Biol. Chem. 2007, 31 (4), 298-302. https://doi.org/10.1016/j.compbiolchem.2007.05.004

      131. Orgun B., Vu J. HL7 ontology and mobile agents for interoperability in heterogeneous medical information systems. Comp. Biol. Med. 2006, 36 (78), 817-836. https://doi.org/10.1016/j.compbiomed.2005.04.010

      132. Pérez-Rey D., Maojo V., García-Remesal M., Alonso-Calvo R., Billhardt H., Martin-Sánchez F., Sousa A. Ontofusion: Ontologybased integration of genomic and clinical databases. Comp. Biol. Med. 2006, 36 (78), 712-730. https://doi.org/10.1016/j.compbiomed.2005.02.004

      133. Krishtal O. A., Kiskin N. I., Tsyndrenko A. Ya., Klyuchko E. M. Pharmacological properties of amino acid receptors in isolated hippocampal neurons. In: Receptors and ion channels. Ed. by Ovchinnikov Y. A., Hucho F. Berlin-New York: Walter de Gruyter. 1987, P. 127-137.

      134. Klyuchko E. M., Klyuchko Z. F., Beloshitsky P. V. Some adaptation characteristics of insects in mountains of Prielbrussie. Nalchik (Russia), "Hypoxia: automatic analysis of hypoxic states of healthy people and sick ones". 2005, V. 1, P. 137-140. (In Russian).

      135. Klyuchko Z. F., Klyuchko E. M. Analysis of taxonomic structure of moth fauna (Lepidoptera: Noctuidae s. l.) of Ukraine according to monitoring data. Eversmannia. 2012, 3 (33), 41-45. (In Russian).

      136. Klyuchko Z. F., Klyuchko E. M. Moth (Lepidoptera: Noctuidae s. l.) of Chercasska region of Ukraine according to results of many-year monitoring. Eversmannia. 2014, V. 37, P. 32-49. (In Russian).

      137. Gonchar O., Klyuchko O., Seredenko M., Oliynyk B. Correction of metabolic disorders at hypoxia by new pharmacological preparations. Mater. 3 FEPS Congress. Nice (France). 2003, P. 228.

      138. Seredenko M., Gonchar O., Klyuchko O., Oliynyk S. Peculiarities of prooxidant - antioxidant balance of organism under hypoxia of different genesis and its corrections by new pharmacological preparations. Acta Physiologica Hungarica. Budapest (Hungary). 2002, 89 (1-3), 292.

      139. Klyuchko O., Klyuchko Z., Lizunova A. Electronic Noctuidae database: some problems and solutions. Proceed. 16th European Congress of Lepidopterology. Cluj (Romania). 2009, P. 31-32.

      140. Klyuchko O., Klyuchko Z., Lizunova A. Noctuidae fauna of Ukrainian Karpathy: results of monitoring (1956-2008). Proceed. 16th European Congress of Lepidopterology. Cluj (Romania). 2009, P. 31.

      141. Klyuchko O. M., Beloshitsky P. V. Investigation of insect adaptation characteristics in Prielbrussie in 2004-2005. Mater. VIII World Congress of International Society for Adaptive Medicine (ISAM). Moskva (Russia). 2006, Р. 165-166.

      142. Beloshitsky P. V., Klyuchko O. M. Contribution of Sirotinin's school into adaptation medicine. Mater. VIII World Congress of International Society for Adaptive Medicine (ISAM). Moskva (Russia). 2006, Р. 158.

      143. Klyuchko O. M., Klyuchko Z. F. Ukrainian Noctuidae Database. Mater. of XIV SEL Congress. Roma (Italy). 2005, P. 49.

      144. Klyuchko Z. F., Klyuchko O. M. Noctuidae (Lepidoptera) of Donbass, Ukraine. Mater. of XIV SEL Congress. Roma (Italy). 2005, P. 41-42.

      145. Beloshitsky P., Klyuchko O., Onopchuck Yu., Onopchuck G. Mathematic model for hypoxic states development for healthy people and ones with ischemic heart disease. High altitude medicine and biology: Mater. ISMM Congress. Beijing (China). 2004, V. 5, P. 251.

      146. Beloshitsky P., Klyuchko O., Kostyuk O., Beloshitsky S. Peculiarities of high mountain factors influence on organism. High altitude medicine and biology: Mater. ISMM Congress. Beijing (China). 2004, V. 5, P. 250.

      147. Klyuchko O. M., Kiskin N. I., Krishtal O. A., Tsyndrenko A. Ya. Araneidae toxins as antagonists of excitatory amino acid responses in isolated hippocampal neurons. X School on biophysics of membrane transport. Szczyrk (Poland). 1990, V. 2, P. 271.

      148. Akaike N., Kawai N., Kiskin N. I., Krishtal O. A., Tsyndrenko A. Ya., Klyuchko O. M. Spider toxin blocks excitatory amino acid responses in isolated hippocampal pyramidal neurons. Neurosci. Lett. 1987, V. 79, P. 326-330. https://doi.org/10.1016/0304-3940(87)90453-8

      149. Gonchar O., Klyuchko O., Beloshitsky P. Ways of myocardial metabolic disorders correction at hypoxia by new pharmacological preparations. High altitude medicine and biology: Mater. ISMM Congress. Beijing (China). 2004, V. 5, P. 249.

      150. Gonchar O., Klyuchko E., cMankovskaya I. Role of complex nucleosides in the reversal of oxidative stress and metabolic disorders induced by acute nitrite poisoning. Ind. J. Pharmacol. 2006, 38 (6), 414-418. https://doi.org/10.4103/0253-7613.28208

      151. Gonchar O., Klyuchko E., Seredenko M., Oliynik S. Corrections of prooxidant - antioxidant homeostasis of organism under hypoxia of different genesis by yackton, new pharmacological preparation. Acta Physiol. Pharmacol. Bulg. 2003, V. 27, P. 53-58.

      152. Klyuchko O. M., Tzal-Tzalko V. I. Elaboration of new monitoring system for Ukrainian Polissia conditions with data defence. Bulletin of Engineering Academy. 2014, V. 2, P. 239-246. (In Ukrainian).

      153. Klyuchko O. M., Piatchanina T. V., Mazur M. G., Basarak O. V. Ontological methods in the development of biomedical information systems. "Integrated intellectual robototechnical complexes" - "IIRTC-2018": Materials of ХІ Intl. Scient. Tech. Conference. 2018, P. 270-272. (In Ukrainian).

      154. Klyuchko O. M., Piatchanina T. V., Mazur M. G., Basarak O. V. Elaboration of networkbased biomedical systems with databases. "Integrated intellectual robototechnical complexes" - "IIRTC-2018": Materials of ХІ Intl. Scient. Tech. Conference. 2018, P. 273-274. (In Ukrainian). https://doi.org/10.1515/9783110442922-009

      155. Aralova N. I., Klyuchko O. M. Mathematic modeling of functional self-organization of pilots' respiratory systems. "Integrated intellectual robototechnical complexes" - "IIRTC-2018": Materials of ХІ Intl. Scient. Tech. Conference. 2018, P. 268-269. (In Ukrainian).

      156. Klyuchko Z. F., Klyuchko O. M. Monitoring of the diversity of Noctuidae (Lepidoptera) fauna in Ukrainian Polissia. "Nature of Polissia: investigation and protection": Materials of Intl. Scient. Conference. 2014, P. 498-502. (In Ukrainian).

      157. Klyuchko Z. F., Klyuchko O. M., Lizunova A. G. Monitoring of Noctuidae fauna of Ukraine using electronic information systems. "Nature of Polissia: investigation and protection": Materials of Intl. Scient. Conference. 2014, P. 261-265. (In Ukrainian).

      158. Biloshitsky P. V., Klyuchko O. M. Studying of sport medicine problems at Elbrus Medical and Biological Station. World Congress in Mountain Medicine. Chronic Hypoxia Symposium. LaPaz, Bolivia. Feb 23-Mar 2, 2019. P. 18.

      159. Aralova N. I., Biloshitsky P. V., Klyuchko O. M. Mathematical models of system mechanisms of organism adaptation to hypoxia. World Congress in Mountain Medicine. Chronic Hypoxia Symposium. LaPaz, Bolivia. Feb 23-Mar 2, 2019. P. 17. https://doi.org/10.18372/1990-5548.56.12944

      160. Klyuchko O. М., Klyuchko Z. F. Electronic databases for Arthropods: methods and applications. Biotechnol. acta. 2018, 11 (4), 28-49. https://doi.org/10.15407/biotech11.04.028

      161. Klyuchko O. М., Klyuchko Z. F. Electronic information systems for monitoring of populations and migrations of insects. Biotechnol. acta. 2018, 11 (5), 5-25. https://doi.org/10.15407/biotech11.05.005

      162. Klyuchko O. М. Expert systems for biology and medicine. Biotechnol. аcta. 2018, 11 (6), 5-28. https://doi.org/10.15407/biotech11.06.005

      163. Klyuchko O. М. Biotechnical information systems for monitoring of chemicals in environment: biophysical approach. Biotechnol. аcta. 2019, 12 (1), 5-28. https://doi.org/10.15407/biotech

      164. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. O. Method of bio-sensor test system application. Patent UA 129923 U, G01N33/00, G01N33/50, C12Q 1/02. Priority: 22.03.2018, u201802896, Issued: 26.11.2018, Bull. 22, 7 p. (In Ukrainian)

      165. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. O. Method of application of biotechnical monitoring system with biosensor (biosensor test system). Patent UA 132245 U; G01N33/50. Priority: 22. 03. 2018 u201802893, Issued: 25.02. 2019, Bull. 4, 7 p. (In Ukrainian).

      166. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. O. Method of application of biotechnical monitoring system with biosensor and subsystem for optical registration. Patent UA 129922 U, G01N33/50. Priority: 22. 03. 2018, u201802894 Issued: 26. 11. 2018, Bull. 22, 10 p. (In Ukrainian).

      167. Klyuchko O. M. Method of application of biotechnical monitoring system for bioindicators' accounting with biosensor and sub-system for optical registration. Patent UA 129987 U, G01N33/00, C12Q 1/02, C12N 15/00. Priority: 27. 04. 2018, u201804662: Issued: 26.11.2018, Bull. 22, 11 p. (In Ukrainian).

      168. Klyuchko O. M. Method for cells' dissociation. Patent UA 130672 U, G01N 33/00, C12Q 1/02, C12N 15/00. Priority: 27. 04. 18, u201804668, Issued: 26. 12. 2018, Bull. 24, 7 p. (In Ukrainian).

      169. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. Method of application of biotechnical monitoring system with expert subsystem and biosensor. Patent UA 131863 U; G01N33/00, C12Q 1/02, C12N 15/00. Priority: 27. 04. 18, u201804663, Issued: 11. 02. 2019, Bull. 3, 7 p. (In Ukrainian).

      170. Klyuchko O. M. Method of qualitative analysis of chemical substances. Patent UA 131016 U, G01N33/50, G01N21/78, C12Q 1/60. Priority: 11. 05. 2018, u201805174, Issued: 10. 01. 2019, Bull. 1. (In Ukrainian).

      171. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. A. Method of quantitative analysis of chemical substances. Patent UA 131524 U; G01N33/50, G01N21/78, C12Q 1/60. Priority: 11. 05. 2018, u201805175, Issued: 25. 01. 2019, Bull. 2, 10 p. (In Ukrainian).

      172. Klyuchko O. M., Biletsky A. Ya. Method of qualitative analysis of chemical substances for the influence on electrical currents in bioobjects. Patent UA; G01N 33/50, G01N 21/78, C12Q 1/60. Priority: May 2018, u201806345. (In Ukrainian)

      173. Klyuchko O. M., Biletsky A. Ya. Method of qualitative analysis of hydrocarbons with a high and toxic effect on bioobjects. Patent UA 133676 U; G01N 33/50, G01N 21/78. Priority: 06.06.2018, u201806342, Issued: 25.04.2019, Bull. 8, 10 p. (In Ukrainian)

      174. Klyuchko O. M., Biletsky A. Ya., Navrots kyi D. O. Method of monitoring of chemical substances' infuences on organisms in few time intervals. Patent UA; G01N33/00, C12Q 1/02. Priority: 14. 12. 2018, u201812443. (In Ukrainian).

      175. Klyuchko O. M., Biletsky A. Ya., Shutko V. N. Method for constructing and testing of physical molecular memory in anisotropic media with molecules - derivatives of phenol. Patent UA; H01B1/121, G01N33/00, C12Q 1/02. Priority: 14. 12. 2018, u201812430. (In Ukrainian).

      176. Klyuchko O. M., Biletsky A. Ya., Lizunov G. V., Shutko V. N. Method of electrical signals generating by bio-elements in the technical hybrid system. Patent UA; A61N1/326, G01N33/00, C12Q 1/02. Priority: 14. 12. 2018, u201812442. (In Ukrainian).

      177. Klyuchko O. M., Biletsky A. Ya., Lizunov G. V., Shutko V. N. Method for application of the system of large-scale monitoring of bioobjects with possibility of their radar control. Patent UA; G01N33/00, G01S13/88, C12N 15/00. Priority: 14. 12. 2018, u201812444. (In Ukrainian).

      178. Klyuchko O. M., Biletsky A. Ya., Lizunov G. V., Piankova O. V. Method of application of biosensor test-system with databases. Patent UA; G01N33/00, C12Q 1/02. Priority: 17. 01. 2019, u201900476. (In Ukrainian).

      179. Klyuchko O. M., Biletsky A. Ya., Lizunov G. V., Piankova O. V. Method of application of monitoring system with biosensor and databases. Patent UA; G01N33/00, C12Q 1/02, G06F11/20. Priority: 17. 01. 2019, u201900476. (In Ukrainian).

technologies in biology and medicine. Kyiv:

NAU-druk. 2008, 252 p. (In Ukrainian).

2. Aralova N. I., Klyuchko O. M., Shakhlina

L. Ya.-H. Parameters of athlete

respiratory system dependence on organism

hormonal status during hypoxic mixtures

inhalation: research on mathematical

models. SciFed J. Sports Med., USA. 2018, 1

(2). http://scifedpublishers.com/fulltext/

parameters-of-athlete-respiratory-systemdependence-

on-organism-hormonal-statusduring-

hypoxic-mixtures-inhalation-researchon-

mathematical-models/22385#Figures

3. Klyuchko O. М. On the mathematical

methods in biology and medicine. Biotechnol.

acta. 2017, 10 (3), 31–40. https://doi.

org/10.15407/biotech10.03.031