Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2019 № 2 KERATINOLYTIC ENZYMES: PRODUCERS, PHYSICAL AND CHEMICAL PROPERTIES. APPLICATION FOR BIOTECHNOLOGY K. V. Avdiyuk, L. D. Varbanets
Print PDF

ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)


"Biotechnologia Acta" V. 12, No 2, 2019
https://doi.org/10.15407/biotech12.02.027
Р. 27-45, Bibliography 73, English
Universal Decimal Classification: 577.152.32

KERATINOLYTIC ENZYMES: PRODUCERS, PHYSICAL AND CHEMICAL PROPERTIES. APPLICATION FOR BIOTECHNOLOGY

K. V. Avdiyuk, L. D. Varbanets

Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv

The aim of the review was to analyze the current ideas on keratinases, a group of proteolytic enzymes that catalyse the cleavage of keratins, which are highly stable fibrous proteins. Representatives of various taxonomic groups of microorganisms, including fungi, actinomycetes and bacteria, are keratinase producers. Modern classification of keratinases according to the MEROPS database is given.

The studies of physical and chemical properties of keratinases indicate that the enzymes are active in a wide range of temperature and pH values, with the optimal action at neutral and alkaline pH and t = 40–70 oC. It was shown that microbial keratinases were predominantly the metallo-, serine- or metallo-serine proteases. They are usually extracellular, and their synthesis is induced by keratin substrates. The review discusses the practical use of keratinases. These enzymes have been successfully applied in bioconversion of keratin wastes to animal feed and nitrogenous fertilizer, as well as in leather, textile, detergent, cosmetic, pharmaceutical industries. Keratinases are also applicable as pesticides and in the production of nanoparticles, biofuel, biodegradable films, glues and foils. In addition, keratinases are used in the degradation of prion proteins which are able to cause a number of human and animal neurodegenerative diseases of spongiform encephalopathy.

Key words: keratinases, producers, regulation of synthesis, physical and chemical properties, application.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019

  • References
    • 1. Sharma S., Gupta A. Sustainable management of keratin waste biomass: applications and future perspectives. Braz. Arch. Biol. Technol. 2016, V. 59, e16150684. https://doi.org/10.1590/1678-4324-2016150684

      2. Gunes B. G., Akkoyun O., Demir T., Bozaci E., Demir A., Hames E. E. Microbial keratinase production and application to improve the properties of wool fabrics. Int. J. Textile Sci. 2018, 7 (2), 43–47. https://doi.org/10.5923/j.textile.20180702.02

      3. Sahni N., Sahota P. P., Phutela U. G. Bacterial keratinases and their prospective applications: a review. Int. J. Curr. Microbiol. App. Sci. 2015, 4 (6), 768–783.

      4. Brandelli A., Daroit J. D., Riffel A. Bioche mical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 2010, 85 (6), 1735–1750. https://doi.org/10.1007/s00253-009-2398-5

      5. Vidmar В., Vodovnik М. Microbial keratinases: enzymes with promising biotechnological applications. Food Technol. Biotechnol. 2018, 56 (3). https://doi.org/10.17113/ftb.56.03.18.5658

      6. Bragulla H. H., Homberger D. G. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J. Anat. 2009, 214 (4), 516–559. https://doi.org/10.1111/j.1469-7580.2009.01066.x

      7. Pupkova M. A. Definition of keratinolytic activity of fungi: (review). Probl. Med. Mycol. 2010, 12 (2), 53–58. (In Russian).

      8. Sahoo D. K., Thatoi H. N., Mitra B., Mondal K. C., Mohapatra P. K. Microbial Biotechnology: Volume 1. Applications in Agriculture and Environment. Advances in microbial keratinase and its potential applications. Patra J. K., Vishnuprasad C. N., Das G. (Eds.). Springer Verlag, Singapore. 2018, P. 105–134. https://doi.org/10.1007/978-981-10-6847-8_5

      9. Naleway S. E., Taylor J. R. A., Porter M. M., Meyers M. A., McKittrick J. Structure and mechanical properties of selected protective systems in marine organisms. Mater. Sci. Eng. C. 2016, V. 59, P. 1143–1167. https://doi.org/10.1016/j.msec.2015.10.033

      10. Sharma R., Devi S. Versatility and commercial status of microbial keratinases: a review. Rev. Environ. Sci. Biotechnol. 2018, 17 (1), 19–45. https://doi.org/10.1007/s11157-017-9454-x

      11. El-Ghonemy D. H., Ali T. H. Optimization of physico-chemical parameters for hyper keratinase production from a newly isolated Aspergillus sp. DHE7 using chicken feather as substrate-management of biowaste. J. Appl. Pharm. Sci. 2017, 7 (9), 171–178. https://doi.org/10.7324/JAPS.2017.70923

      12. Gopinath C. B., Anbu P., Lakshmipriya T., Tang T. H., Chen Y., Hashim U., Ruslinda A. R., Arshad M. K. Biotechnological aspects and perspective of microbial keratinase production. Biomed. Res. Int. 2015, V. 2015, P. 140726–140736. https://doi.org/10.1155/2015/140726

      13. Abdel-Naby M. A., El-Refai H. A., Ibrahim M. H. A. Structural characterization, catalytic, kinetic and thermodynamic properties of keratinase from Bacillus pumilus FH9. Int. J. Biol. Macromol. 2017, 105 (1), 973–980. https://doi.org/10.1016/j.ijbiomac.2017.07.118.

      14. Purchase D. The handbook of microbial bioresources. Microbial keratinases: characteristics, biotechnological applications and potential. Gupta V. K., Sharma G. D., Tuohy M. G., Gaur R. (Eds.). CAB International Publishing, Wallingford. 2016, P. 634–674.

      15. Langeveld J. P., Wang J. J., Van de Wiel D. F., Shih G. C., Garssen G. J., Bossers A., Shih J. C. Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. J. Infect. Dis. 2003, 188 (11), 1782–1789. https://doi.org/10.1086/379664

      16. Yue X. Y., Zhang B., Jiang D. D., Liu Y. J., Niu T. G. Separation and purification of a keratinase as pesticide against root-knot nematodes. World J. Microbiol. Biotechnol. 2011, 27 (9), 2147–2153. https://doi.org/10.1007/s11274-011-0680-z

      17. Verma A., Singh H., Anwar S., Chattopadhyay A., Tiwari K. K., Kaur S., Dhilon G. S. Microbial keratinases: industrial enzymes with waste management potential. Crit. Rev. Biotechnol. 2017, 37 (4), 476–491. https://doi.org/10.1080/07388551.2016.1185388

      18. Wu W.-L., Chen M.-Y., Tu I-F., Lin Y.-C., Kumar N. E., Chen M.-Y., Ho M.-C., Wu S.-H. The discovery of novel heat-stable keratinases from Meiothermus taiwanensis WR-220 and other extremophiles. Sci. Rep. 2017, 7 (1), 46584669. https://doi.org/10.1038/s41598-017-04723-4

      19. Gödde C., Sahm K., Brouns S. J., Kluskens L. D., van der Oost J., de Vos W. M., Antranikian G. Cloning and expression of islandisin, a new thermostable subtilisin from Fervidobacterium islandicum, in Escherichia coli. Appl. Environ. Microbiol. 2005, 71 (7), 3951–3958. https://doi.org/10.1128/AEM.71.7.3951-3958.2005

      20. Habbeche A., Saoudi B., Jaouadi B., Haberra S., Kerouaz B., Boudelaa M., Badis A., Ladjama A. Purification and biochemical characterization of a detergentstable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost. J. Biosci. Bioeng. 2014, 117 (4), 413–421. https://doi.org/10.1016/j.jbiosc.2013.09.006

      21. Ivanko O. V., Varbanets L. D. Purification and physico-chemical properties of Streptomyces sp. 1349 collagenase and Streptomyces sp. 1382 keratinase. Mikrobiol. Zh. 2004, 66 (2), 11–24. (In Ukrainian).

      22. Ben Elhoul M., Zaraî Jaouadi N., Rekik H., Omrane Benmrad M., Mechri S., Moujehed E., Kourdali S., El Hattab M., Badis A., Bejar S., Jaouadi B. Biochemical and molecular characterization of new keratinoytic protease from Actinomadura viridilutea DZ50. Int. J. Biol. Macromol. 2016, V. 92, P. 299–315. https://doi.org/10.1016/j.ijbiomac.2016.07.009

      23. Cavello I. A., Hours R. A., Rojas N. L., Cavalitto S. F. Purification and characterization of a keratinolytic serine protease from Purpureocillium lilacinum LPS # 876. Proc. Biochem. 2013, 48 (5–6), 972–978. https://doi.org/10.1016/j.procbio.2013.03.012

      24. Anitha T. S., Palanivelu P. Production and characterization of keratinolytic protease(s) from the fungus Aspergillus parasiticus. Int. J. Res. Biol. Sci. 2012, 2 (2), 87–93.

      25. Ramakrishna R. M., Sathi R. K., Ranjita C. Y., Bee H., Reddy G. Effective feather degradation and keratinase production by Bacillus pumilus GRK for its application as bio-detergent additive. Biores. Technol. 2017, V. 243, P. 254–263. https://doi.org/10.1016/j.biortech.2017.06.067

      26. Fakhfakh N., Kanoun S., Manni L., Nasri M. Production and biochemical and molecular characterization of a keratinolytic serine protease from chicken featherdegrading Bacillus licheniformis RPk. Can. J. Microbiol. 2009, 55 (4), 427–436. https://doi.org/10.1139/w08-143

      27. Wang L., Qian Y., Cao Y., Huang Y., Chang Z., Huang H. Production and characterization of keratinolytic proteases by a chicken feather-degrading thermophilic strain, Thermoactinomyces sp. YT06. J. Microbiol. Biotechnol. 2017, 27 (12), 2190–2198. https://doi.org/10.4014/jmb.1705.05082

      28. Jaouadi N. Z., Rekik H., Badis A., Trabelsi S.,Belhoul M., Yahiaoui A. B., Ben Aicha H., Toumi A., Bejar S., Jaouadi B. Biochemical and molecular characterization of a serine keratinase from Brevibacillus brevis US575 with promising keratin-biodegradation and hide-dehairing activities. PLoS One. 2013, 8 (10), 1–17. https://doi.org/10.1371/journal.pone.0076722

      29. Bouacem K., Bouanane-Darenfed A., Zaraî Jaouadi N., Joseph M., Hacene H., Ollivier B., Fardeau M. L., Bejar S., Jaouadi B. Novel serine keratinase from Caldicoprobacter algeriensis exhibiting outstanding hide dehairing abilities. Int. J. Biol. Macromol. 2016, V. 86, P. 321–328. https://doi.org/10.1016/j.ijbiomac.2016.01.074

      30. Zhang R. X., Gong J. S., Zhang D. D., Su C., Hou Y. S., Li H., Shi J. S., Xu Z. H. A metallo-keratinase from a newly isolated Acinetobacter sp. R-1 with low collagenase activity and its biotechnological application potential in leather industry. Bioproc. Biosyst. Eng. 2016, 39 (1), 193–204. https://doi.org/10.1007/s00449-015-1503-7

      31. Balaji S., Senthil Kumar M., Karthikeyan R., Kumar Ramadhar, Kirubanandan S., Sridhar R., Sehgal P. K. Purification and characterization of an extracellular keratinase from a hornmeal-degrading Bacillus subtilis MTCC (9102). World J. Microbiol. Biotechnol. 2008, V. 24, P. 2741–2745. https://doi.org/10.1007/s11274-008-9782-7

      32. Zhang R. X., Gong J. S., Su C., Zhang D. D., Tian H., Dou W. F., Li H., Shi J. S., Xu Z. H. Biochemical characterization of a novel surfactant-stable serine keratinase with no collagenase activity from Brevibacillus parabrevis CGMCC 1079. Int. J. Biol. Macromol. 2016, V. 93, P. 843–851. https://doi.org/10.1016/j.ijbiomac.2016.09.063

      33. Prakash P., Jayalakshmi S. K., Sreeramulu K. Purification and characterization of extreme alkaline, thermostable keratinase, and keratin disulfide reductase produced by Bacillus halodurans PPKS-2. Appl. Microbiol. Biotechnol. 2010, 87 (2), P. 625–633. https://doi.org/10.1007/s00253-010-2499-1

      34. Gordonova I. K., Nikitina Z. K. Cladosporium sphaerospermum keratinase biosynthesis regulation. Probl. Biol. Med. Pharm. Chem. 2015, N 8, P. 14–18. (In Russian).

      35. Anitha T. S., Palanivelu P. Purification and characterization of an extracellular keratinolytic protease from a new isolate of Aspergillus parasiticus. Prot. Expr. Purif. 2013, 88 (2), 214–220. https://doi.org/10.1016/j.pep.2013.01.007

      36. Gradisar H., Friedrich J., Krizaj I., Jerala R. Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marguandii and Doratomyces microsporus to some known proteases. Appl. Environ. Microbiol. 2005, 71 (7), 3420–3426. https://doi.org/10.1128/AEM.71.7.3420-3426.2005

      37. Nikitina Z. K., Gordonova I. K. Exogenous regulation of productivity of Penicillium citrinum — keratinase producer. Probl. Biol. Med. Pharm. Chem. 2016, N 9, P. 8–11. (In Russian).

      38. Barman N. C., Zohora F. T., Das K. C., Mow la M. G., Banu N. A., Salimullah M., Hashem A. Production, partial optimization and characterization of keratinase enzyme by Arthrobacter sp. NFH5 isolated from soil samples. AMB Express. 2017, 7 (1), 181–188. https://doi.org/10.1186/s13568-017-0462-6

      39. Łaba W., Żarowska B., Chorążyk D., Pudło A., Piegza M., Kancelista A., Kopeć W. New keratinolytic bacteria in valorization of chicken feather waste. AMB Express. 2018, 8 (1), 9–22. https://doi.org/10.1186/s13568-018-0538-y

      40. Pawar V. A., Prajapati A. S., Akhani R. C., Patel D. H., Subramanian R. B. Molecular and biochemical characterization of a thermostable keratinase from Bacillus altitudinis RBDV1. Biotechnology. 2018, 8 (2), 107–113. https://doi.org/10.1007/s13205-018-1130-5

      41. Zaraî Jaouadi N., Rekik H., Ben Elhoul M., Zohra Rahem F., Hila C. G., Ben Aicha H. S., Badis A., Toumi A., Bejar S., Jaouadi B. A novel keratinase from Bacillus tequilensis strain Q7 with promising potential for the leather bating process. Int. J. Biol. Macromol. 2015, V. 79, P. 952–964. https://doi.org/10.1016/j.ijbiomac.2015.05.038

      42. Roohi Kuddus M. Keratin degrading microbial keratinase as a tool for bioremediation. J. Microbiol. Exp. 2017, 5 (4), 00154–00155. https://doi.org/10.15406/jmen.2017.05.00154

      43. Yusuf I., Ahmad S. A., Phang L. Y., Syed M. A., Shamaan N. A., Abdul Khalil K., Dahalan F. A., Shukor M. Y. Keratinase production and biodegradation of polluted secondary chicken feather wastes by a newly isolated multi heavy metal tolerant bacterium Alcaligenes sp. AQ05-001. J. Environ. Manage. 2016, 183 (1), 182–195. https://doi.org/10.1016/j.jenvman.2016.08.059

      44. Ranjit G. Gurav, Dhanashri B. Mirajkar, Akanksha V. Savardekar, Snehal M. Pisal. Microbial degradation of poultry feather biomass by Klebsiella sp. BTSUK isolated from poultry waste disposal site. RJLBPCS. 2016, 1 (6), 279–289. https://doi.org/10.26479/2016.0106.01

      45. Singh I., Kushwaha R. K. S. Keratinases and microbial degradation of keratin. Adv. Appl. Sci. Res. 2015, 6 (2), 74–82.

      46. Kanoksilapatham W., Intagun W. A Review: biodegradation and applications of keratin degrading microorganisms and keratinolytic enzymes, focusing on thermophiles and thermostable serine proteases. Amer. J. Appl. Sci. 2017, 14 (11), 1016–1023. https://doi.org/10.3844/ajassp.2017.1016.1023

      47. Isiaka A. Adelere, Agbaje Lateef. Keratinases: emerging trends in production and applica tions as novel multifunctional biocatalysts. Kuwait J. Sci. 2016, 43 (3), 118–127.

      48. Wawrzkiewicz K., Lobarzewski J., Wolski T. Intra cellular keratinase of Trichophyton gallinae. J. Med. Vet. Mycol. 1987, 25 (4), 261–268. https://doi.org/10.1080/02681218780000601

      49. Uttangi V., Aruna K. Optimization of production and partial characterization of keratinase produced by Bacillus thuringiensis strain Bt407 isolated from poultry soil. Int. J. Curr. Microbiol. App. Sci. 2018, 7 (4), 596–626. https://doi.org/10.20546/ijcmas.2018.704.069

      50. Kumar R., Balaji S., Uma T. S., Mandal A. B., Sehgal P. K. Optimization of influential parameters for extracellular keratinase production by Bacillus subtilis (MTCC9102) in solid state fermentation using horn meal — a biowaste management. Appl. Biochem. Biotechnol. 2010, 160 (1), 30–39. https://doi.org/10.1007/s12010-008-8452-4

      51. Nigam V. K., Singhal P., Vidyarthi A. S., Mohan M. K., Ghosh P. Studies on kera tinolytic activity of alkaline proteases from halophilic bacteria. Int. J. Pharm. Bio. Sci. 2013, 4 (2), 389–399.

      52. Kublanov I. V., Tsiroulnikov K. B., Kaliber da E. N., Rumsh L. D., Haertlé T., Bonch-Osmolovskaya E. A. Keratinase of an anaerobic thermophilic bacterium Thermoanaerobacter strain 1004-09 isolated from a hot spring in the Baikal rift zone. Microbiol. 2009, 78 (1), 67–75. https://doi.org/10.1134/S0026261709010093

      53. Cai C., Zheng X. Medium optimization for keratinase production in hair substrate by a new Bacillus subtilis KD-N2 using response surface methodology. J. Ind. Microbiol. Biotechnol. 2009, 36 (7), 875–883. https://doi.org/10.1007/s10295-009-0565-4

      54. Nikitina Z. K., Gordonova I. K. Purification, clearining and some properties keratinolytic enzyme, secreting by Penicillium citrinum. Probl. Biol. Med. Pharm. Chem. 2013, 11 (9), 36–41. (In Russian).

      55. Prakash P., Jayalakshmi S. K., Sreeramulu K. Production of keratinase by free and immobilized cells of Bacillus halodurans strain PPKS-2: partial characterization and its application in feather degradation and dehairing of the goat skin. Appl. Biochem. Biotechnol. 2010, 160 (7), 1909–1920. https://doi.org/10.1007/s12010-009-8702-0

      56. Sahoo D. K., Halder S. K., Das A., Jana A., Paul T., Thatoi H. Keratinase production by Bacillus weihenstephanensis PKD5 in solid-state fermentation and its milk clotting potential. Ind. J. Biotechnol. 2015, V. 14, P. 200–207.

      57. Abdel-Fattah A. M., El-Gamal M. S., Ismail S. A., Emran M. A., Hashem A. M. Biodegradation of feather waste by keratinase produced from newly isolated Bacillus licheniformis ALW1. Genet. Eng. Biotechnol. J. 2018. https://doi.org/10.1016/j.jgeb.2018.05.005

      58. Fang Z., Zhang J., Du G., Chen J. Rational protein engineering approaches to further improve the keratinolytic activity and thermostability of engineered keratinase KerSMD. Biochem. Eng. J. 2017, V. 127, P. 147–153. https://doi.org/10.1016/j.bej.2017.08.010

      59. Lin H. H., Yin L. J., Jiang S. T. Functional expression and characterization of keratinase from Pseudomonas aeruginosa in Pichia pastoris. J. Agric. Food Chem. 2009, 57 (12), 5321–5325. https://doi.org/10.1021/jf900417t

      60. Liu B., Zhang J., Li B., Liao X., Du G., Chen J. Expression and characterization of extreme alkaline, oxidationresistant keratinase from from Bacillus licheniformis in recombinant Bacillus subtilis WB600 expression system and its application in wool fiber processing. World J. Microbiol. Biotechnol. 2013, 29 (5), 825–832. https://doi.org/10.1007/s11274-012-1237-5

      61. Aly M. M., Tork S. High keratinase production and keratin degradation by a mutant strain KR II, from Streptomyces radiopugnans KR 12. JABS. 2018, 12 (1), 18–25.

      62. Cai С., Lou В., Zheng X. Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis. J. Zhejiang Univ. Sci. B. 2008, 9 (1), 60–67. https://doi.org/10.1631/jzus.B061620

      63. Liu B., Zhang J., Fang Z., Gu L., Liao X., Du G., Chen J. Enhanced thermostability of keratinase by computational design and empirical mutation. J. Ind. Microbiol. Biotechnol. 2013, 40 (7), 697–704. https://doi.org/10.1007/s10295-013-1268-4

      64. Bressollier P., Letourneau F., Urdaci M., Verneuil B. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Appl. Environ. Microbiol. 1999, 65 (6), 2570–2576.

      65. Laba W., Choinska A., Rodziewicz A., Piegza M. Keratinolytic abilities of Micrococcus luteus from poultry waste. Braz. J. Microbiol. 2015, 46 (3), 691–700. https://doi.org/10.1590/S1517-838246320140098

      66. Tiwary E., Gupta R. Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15: Biochemical characterization and application in feather degradation and dehairing of hides. Bioresours Technol. 2010, 101 (15), 6103–6110. https://doi.org/10.1016/j.biortech.2010.02.090

      67. Fang Z., Zhang J., Liu B., Du G., Chen J. Biochemical characterization of three keratinolytic enzymes from Stenotrophomonas maltophilia BBE11-1 for biodegrading keratin wastes. Int. Biodeterior. Biodegradation. 2013, V. 82, P. 166–172. https://doi.org/10.1016/j.ibiod.2013.03.008

      68. Daniel J. Daroit, Ana Paula F. Corrêa, Jéferson Segalin, Adriano Brandelli. Characterization of a keratinolytic protease produced by the feather-degrading Amazonian bacterium Bacillus sp. P45. Biocatal. Biotransform. 2010, 28 (5), 370–379. https://doi.org/10.3109/10242422.2010.532549

      69. Jaouadi B., Abdelmalek B., Fodil D., Ferradji F. Z., Rekik H., Zaraî N., Bejar S. Purification and characterization of a thermostable keratinolytic serine alkaline proteinase from Streptomyces sp. Strain AB1 with high stability in organic solvents. Bioresours Technol. 2010, 101 (21), 8361–8369. https://doi.org/10.1016/j.biortech.2010.05.066

      70. Mitsuiki S., Ichikawa M., Oka T., Sakai M., Moriyama Y., Sameshima Y., Goto M., Furukawa K. Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Enzyme Microb. Technol. 2004, 34 (5), 482–489. https://doi.org/10.1016/j.enzmictec.2003.12.011

      71. Gupta S., Nigam A., Singh R. Purification and characterization of a Bacillus subtilis keratinase and its prospective application in feed industry. Acta Biologica Szegediensis. 2015, 59 (2), 197–204.

      72. Gupta R., Sharma R., Beg Q. K. Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Crit. Rev. Biotechnol. 2013, 33 (2), 216–228. https://doi.org/10.3109/07388551.2012.685051

      73. Fang Z., Yong Y. C., Zhang J., Du G., Chen J. Keratinolytic protease: a green biocatalyst for leather industry. Appl. Microbiol. Biotechnol. 2017, 101 (21), 7771–7779. https://doi.org/10.1007/s00253-017-8484-1