Select your language

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

 2 2014

"Biotechnologia Acta" v. 7, no 2, 2014
https://doi.org/10.15407/biotech7.02.009
Р. 9-25, Bibliography 179, Ukrainian.
Universal Decimal classification: 759.873.088.5:661.185

MICROBIAL SURFACTANTS. II. LIPOPEPTIDES

T. P. Pirog, A. D. Konon, A. P. Sofilkanich

National University of Food Technologies, Kyiv, Ukraine

The classification and the chemical structure of the lipopeptides and their producers (bacteria of the genera Bacillus and Pseudomonas) are given. The role of the lipopeptides in cells motility, biofilm formation, metal binding and xenobiotics degradation and their action on the cells of pro- and eukaryotes is summarized. The stages of the nonribosomal lipopeptides synthesis and the role of two-component (GacA/GacS, ComA/ComP) and the quorum system regulation of this process are shown.

The potential of lactic acid bacteria and marine microorganisms as alternative surfactants producers (glycolipids, lipopeptides, phospholipids and fatty acids, glycolipopeptides) are discussed. Their productivity and advantages over traditional producers are given as well. The properties of surfactants synthesized by lactic acid bacteria (the reduction of the surface tension, the critical micelle concentration, the stability in a wide range of pH, the temperature, the biological activity) are  summarized.

Surfactants of nonpathogenic probiotic bacteria could be used as effective antimicrobial agents and antiadhesive and marine producers which able to synthesize unique metabolites that are not produced by other microorganisms.

Key words: microbial surfactants, lipopeptides, lactic acid bacteria, alternative producers.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014

References

1. Bais H. P., Fall R., Vivanco J. M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant. Physiol. 2004, 134(1), 307–319.
http://dx.doi.org/10.1104/pp.103.028712

2. Buber E., Stindl A., Acan N. L., Kocagoz T., Zocher R. Antimycobacterial activity of lipodepsipeptides produced by Pseudomonas syringae pv. syringae B359. Nat. Prod. Lett. 2002, 16(6), 419–423.
http://dx.doi.org/10.1080/10575630290034294

3. Chitarra G. S., Breeuwer P., Nout M. J., van Aelst A. C., Rombouts F. M., Abee T. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol. 2003, 94(2), 159–166.
http://dx.doi.org/10.1046/j.1365-2672.2003.01819.x

4. El Sayed K. A., Bartyzel P., Shen X. Y., Perry T. L., Zjawiony J. K., Hamann M. T. Marine natural products as antituberculosis agents. Tetrahedron. 2000, 56(7), 949–953.
 http://dx.doi.org/10.1016/S0040-4020(99)01093-5

5. Emanuele M. C., Scaloni A., Lavermicocca P., Jacobellis N. S., Camoni L., Giorgio D., Pucci P., Paci M., Segre A., Ballio A. Corpeptins, new bioactive lipodepsipeptides from cultures of Pseudomonas corrugata. FEBS Lett. 1998, 433(3), 317–320.
 http://dx.doi.org/10.1016/S0014-5793(98)00933-8

6. Gerard J., Lloyd R., Barsby T., Paul H., Kelly M. T.,  Andersen R. J. Massetolides A–H, antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats. J. Nat. Prod. 1997, 60(3), 223–229.
http://dx.doi.org/10.1021/np9606456

7. Hiradate S., Yoshida S., Sugie H., Yada H., Fujii Y. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry. 2002, 61(6), 693–698.
http://dx.doi.org/10.1016/S0031-9422(02)00365-5

8. Huang X., Lu Z., Bie X., Zhao H., Yang S. Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis fmbj strains using a response surface method. Appl. Microbiol. Biotechnol. 2007, 74(2), 454–461.
http://dx.doi.org/10.1007/s00253-006-0674-1

9. Kuiper I., Lagendijk E. L., Pickford R., Derrick J. P., Lamers G. E., Thomas-Oates J. E., Lugtenberg B. J., Bloemberg G. V. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol. Microbiol. 2004, 51(1), 97–113.
http://dx.doi.org/10.1046/j.1365-2958.2003.03751.x

10. Lavermicocca P., Iacobellis N. S., Simmaco M., Graniti A. Biological properties and spectrum of activity of Pseudomonas syringae pv. syringae toxins. Physiol. Mol. Plant. P. 1997, 50(2), 129–140.
http://dx.doi.org/10.1006/pmpp.1996.0078

11. Lei Li, Minghe Mo, Qing Qu, Hong Luo, Keqin Zhang. Compounds inhibitory to nematophagous fungi produced by Bacillus sp. strain H6 isolated from fungistatic soil. Eur. J. Plant. Pathol. 2007, 117(4), 329–340.
http://dx.doi.org/10.1007/s10658-007-9101-4

12. Nielsen T. H., Thrane C., Christophersen C., Anthoni U., Sorensen J. Structure, production characteristics and fungal antagonism of tensin — a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J. Appl. Microbiol. 2000, 89(6), 992–1001.
http://dx.doi.org/10.1046/j.1365-2672.2000.01201.x

13. Raaijmakers J. M., De Bruijn I., Nybroe O., Ongena M. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 2010, 34(6), 1037–1062.
http://dx.doi.org/10.1111/j.1574-6976.2010.00221.x

14. Romero D., de Vicente A., Rakotoaly R. H., Dufour S. E., Veening J. W., Arrebola E., Cazorla F. M., Kuipers O. P., Paquot M., P?rez-Garc?a A. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe Interact. 2007, 20(4), 430–440.
http://dx.doi.org/10.1094/MPMI-20-4-0430

15. Soler-Rivas C., Arpin N., Olivier J. M., Wichers H. J. WLIP, a lipodepsipeptide of Pseudomonas ‘reactans’, as inhibitor of the symptoms of the brown blotch disease of Agaricus bisporus. J. Appl. Microbiol. 1999, 86(4), 635–641.
http://dx.doi.org/10.1046/j.1365-2672.1999.00709.x

16. Tendulkar S. R., Saikumari Y. K., Patel V., Raghotama S., Munshi T. K., Balaram P., Chattoo B. B. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J. Appl. Microbiol. 2007, 103(6), 2331–2339.
http://dx.doi.org/10.1111/j.1365-2672.2007.03501.x

17. Tourй Y., Ongena M., Jacques P., Guiro A., Thonart P. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 2004, 96(5), 1151–1160.
http://dx.doi.org/10.1111/j.1365-2672.2004.02252.x

18. Velmurugan N., Choi M. S., Han S. S., Lee Y. S. Evaluation of antagonistic activities of Bacillus subtilis and Bacillus licheniformis against wood-staining fungi: in vitro and in vivo experiments. J. Microbiol. 2009, 47(4), 385–392.
http://dx.doi.org/10.1007/s12275-009-0018-9

19. Wang J., Liu J., Chen H., Yao J. Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Appl. Microbiol. Biotechnol. 2007, 76(4), 889–894.
http://dx.doi.org/10.1007/s00253-007-1054-1

20. Yu G. Y., Sinclair J. B., Hartman G. L., Bertagnolli B. L. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil. Biol. Biochem. 2002, 34(7), 955–963.
 http://dx.doi.org/10.1016/S0038-0717(02)00027-5

21. Reddy M. S., Naresh B., Leela T., Prashanthi M., Madhusudhan N. C., Dhanasri G., Devi P. Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresour. Technol. 2010, 101(2), 7980–7839.
http://dx.doi.org/10.1016/j.biortech.2010.04.054

22. Saimmai A., Sobhon V., Maneerat S. Production of biosurfactant from a new and promising strain of Leucobacter komagatae 183. Ann. Microbiol. 2012, 62(1), 391–402.
http://dx.doi.org/10.1007/s13213-011-0275-9

23. Shavandi M., Mohebali G., Haddadi A., Shakarami H., Nuhi A. Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6. Col­loids Surf. B. Biointerfaces. 2011, 82(2), 477–482.
http://dx.doi.org/10.1016/j.colsurfb.2010.10.005

24. Bello X. V., Devesa-Rey R., Cruz J. M., Moldes A. B. Study of the synergistic effects of salinity, pH, and temperature on the surface-active properties of biosurfactants produced by Lactobacillus pentosus. J. Agric. Food. Chem. 2012, 60(5), 1258–1265.
http://dx.doi.org/10.1021/jf205095d

25. Gudina E. J., Rocha V., Teixeira J. A., Rodrigues L. R. Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Lett. Appl. Microbiol. 2010, 50(4), 419–424.
http://dx.doi.org/10.1111/j.1472-765X.2010.02818.x

26. Gudina E. J., Teixeira J. A., Rodrigues L. R. Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf. B. Biointerfaces. 2010, 76(1), 298–304.
http://dx.doi.org/10.1016/j.colsurfb.2009.11.008

27. Moldes A. B., Paradelo R., Rubinos D., Devesa-Rey R., Cruz J. M., Barral M.T. Ex situ treat­ment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus. J. Agric. Food. Chem. 2011, 59(17), 9433–9437.
http://dx.doi.org/10.1021/jf201807r

28. Pinto S., Alves P., Santos A. C., Matos C. M., Oliverios B., Con?alves  S., Gudina E., Rodrigues L. R., Teixeira J. A., Gil M. N. On with biosurfactants isolated from probiotic strains. J. Biomed. Mater. Res. 2011, 98(4), 535–543.
http://dx.doi.org/10.1002/jbm.a.33146

29. Saravanakumari P., Mani K. Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multi-drug resistant pathogens. Bioresour. Technol. 2010, 101(22), 8851–8854.
http://dx.doi.org/10.1016/j.biortech.2010.06.104

30. Damare S., Singh P., Raghukumar S. Biotechnology of marine fungi. Prog. Mol. Subcell. Biol. 2012, V. 53, P. 277–297.
https://doi.org/10.1007/978-3-642-23342-5_14.

31. Dusane D. H., Matkar P., Venugopalan V. P., Kumar A. R., Zinjarde S. S. Cross-species induction of antimicrobial compounds, biosurfactants and quorum-sensing inhibitors in tropical marine epibiotic bacteria by pathogens and biofouling microorganisms. Curr. Microbiol. 2011, 62(3), 974–980.
http://dx.doi.org/10.1007/s00284-010-9812-1

32. Kennedy J., O’Leary N.D., Kiran G.S., Morrissey J.P., O’Gara F., Selvin J., Dobson A. D. l. Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J. Appl. Microbiol. 2011, 111(4), 787–799.
http://dx.doi.org/10.1111/j.1365-2672.2011.05106.x

33. Khopade A., Ren B., Liu X. Y., Khopade A., Ren B., Liu X. Y., Mahadik K., Zhang L., Kokare C. Production and characterization of biosurfactant from marine Streptomyces species B3. J. Colloid. Interface. Sci. 2012, 367(1), 311–318.
http://dx.doi.org/10.1016/j.jcis.2011.11.009

34. Kiran G. S., Thomas T. A., Selvin J. Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid-state cultivation. Colloids Surf. B. Biointerfaces. 2010, 78(1), 8–16.
http://dx.doi.org/10.1016/j.colsurfb.2010.01.028

35. Konishi M., Fukuoka T., Nagahama T., Morita T., Imura T., Kitamoto D., Hatada Y. Biosurfactant-producing yeast isolated from Calyptogena soyoae (deep-sea cold-seep clam) in the deep sea. J. Biosci. Bioeng. 1998, 110(2), 169–175.
http://dx.doi.org/10.1016/j.jbiosc.2010.01.018

36. Liu X., Ren B., Chen M., Wang H., Kokare C. R., Zhon X., Wang J., Dai H., Song F., Lui M., Wang J., Wang S., Zhang L. Production and characterization of a group of bioemulsifiers from the marine Bacillus velezensis strain H3. Appl. Microbiol. Biotechnol. 1998, 87(5), 1881–1893.
http://dx.doi.org/10.1007/s00253-010-2653-9

37. Satpute S. K., Banat I. M., Dhakephalkar P. K., Banpurkar A. G., Chopade B. A. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol. Adv. 2010, 28(4), 436–450.
http://dx.doi.org/10.1016/j.biotechadv.2010.02.006

38. Nazari M., Kurdi M., Heerklotz H. Classifying surfactants with respect to their effect on lipid membrane order. Biophys. J. 2012, 102(3), 498–506.
http://dx.doi.org/10.1016/j.bpj.2011.12.029

39. Velho R. V., Medina L. F., Segalin J., Brandelli A. Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi. Folia. Microbiol. (Praha). 2011, 56(4), 297–303.
http://dx.doi.org/10.1007/s12223-011-0056-7

40. Roongsawang N., Washio K., Morikawa M. Diversity of nonribosomal Peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int. J. Mol. Sci. 2010, 12(1), 141–172.
http://dx.doi.org/10.3390/ijms12010141

41. Wang X., Luo C., Liu Y., Zhang R., Chen Z. Three non-aspartate amino acid mutations in the ComA response regulator receiver motif severely decrease surfactin production, competence development and spore formation in Bacillus subtilis. J. Microbiol. Biotechnol. 2010, 20(2), 301–310.

42. Youssef N. H., Wofford N., McInerney M. J. Importance of the long-chain fatty acid beta-hydroxylating cytochrome P450 enzyme ybdt for lipopeptide biosynthesis in Bacillus subtilis strain OKB105. Int. J. Mol. Sci. 2011, 12(3), 1767–1786.
http://dx.doi.org/10.3390/ijms12031767

43. Bechet M., Caradec T., Hussein W., Abderrahmani A., Chollet M., Lecl?re V., Dubois T., Lereclus D., Pupin M., Jacques P. Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Appl. Microbiol. Biotechnol. 2012, 95(3), 593–600.

44. Biria D., Maghsoudi E., Roostaazad R., Dadafarin H., Lotfi A. Amoozegar S, M. Puri?cation and characterization of a novel biosurfactant produced by Bacillus licheniformis MS3. World J. Microbiol. Biotechnol. 2010, 26(5), Р. 871–878.

45. Canova S. P., Petta T., Reyes L. F., Zucchi T. D., Moraes A. B., Melo I. S. Characterization of lipopeptides from Paenibacillus sp. (IIRAC30) suppressing Rhizoctonia solani. World J. Microbiol. Biotechnol. 2010, 26(12), 2241–2247.

46. Singh B. R., Dwivedi S., Al-Khedhairy A. A., Musarrat J. Synthesis of stable cadmium sulfide nanoparticles using surfactin produced by Bacillus amyloliquifaciens strain KSU-109. Colloids. Surf. B. Biointerfaces. 2011, 85(2), 207–213.
http://dx.doi.org/10.1016/j.colsurfb.2011.02.030

47. Liu W., Wang X., Wu L., Chen M., Tu C., Luo Y., Christie P.. Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge. Chemosphere. 2012, 87(10), 1105–1110.
http://dx.doi.org/10.1016/j.chemosphere.2012.01.059

48. Sousa M., Melo V. M., Rodrigues S., Sant’ana H., B., Gon?alves L. R. Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source. Bioprocess. Biosyst. Eng. 2012, 35(6), 897–906.
http://dx.doi.org/10.1007/s00449-011-0674-0

49. Sriram M. I., Kalishwaralal K., Deepak V., Gracerosepat R., Srisakthi K., Gurunathan S. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf. B. Biointerfaces. 2011, 85(2), 174–181.
http://dx.doi.org/10.1016/j.colsurfb.2011.02.026

50. Yao D., Ji Z., Wang C., Qi G., Zhang L., Ma X., Chen S. Co-producing iturin A and poly-?-glutamic acid from rapeseed meal under solid state fermentation by the newly isolated Bacillus subtilis strain 3–10. World. J. Microbiol. Biotechnol. 2012, 28(3), 985–991.
http://dx.doi.org/10.1007/s11274-011-0896-y

51. Zhao Y., Yang S. Z., Mu B. Z. Quantitative analyses of the isoforms of surfactin produced by Bacillus subtilis HSO 121 using GC-MS. Anal. Sci. 2012, 28(8), 789–793.
http://dx.doi.org/10.2116/analsci.28.789

52. Saimmai A., Sobhon V., Maneerat S. Molasses as a whole medium for biosurfactants production by Bacillus strains and their application. Appl. Biochem. Biotechnol. 2011, 165(1), 315–335.
http://dx.doi.org/10.1007/s12010-011-9253-8

53. Shaligram N. S., Singhal R. S. Surfactin — a review on biosynthesis, fermentation, purif?cation and applications. Food. Technol. Biotechnol. 2010, 48(2), 119–134.

54. Hsieh F. C., Li M. C., Lin T. C., Kao S. S. Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr. Microbiol. 2004, 49(3), 186–191.
http://dx.doi.org/10.1007/s00284-004-4314-7

55. Ponte Rocha M. V., Gomes Barreto R. V., Melo V. M., Barros Gon?alves L. R. Evaluation of cashew apple juice for surfactin production by Bacillus subtilis LAMI008. Appl. Biochem. Biotechnol. 2009, 155(1–3), 366–378.
http://dx.doi.org/10.1007/s12010-008-8459-x

56. Puntus I. F., Sakharovsky V. G., Filonov A. E., Boronin A. M. Surface activity and metabolism of hydrocarbon-degrading microorganisms growing on hexadecane and naphthalene. Proc. Biochem. Rev. 2005, 40(8), 2643–2648.
http://dx.doi.org/10.1016/j.procbio.2004.11.006

57. Roongsawang N., Thaniyavarn J., Thaniyavarn S., Kameyama T., Haruki M., Imanaka T., Morikawa M., Kanaya S.. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles. 2002, 6(6), 499–506.
http://dx.doi.org/10.1007/s00792-002-0287-2

58. Kakinuma A., Oachida A., Shima T., Sugino H., Isano M., Tamura G., Arima K. Confirmation of the structure of surfactin by mass spectrometry. Agric. Biol. Chem. 1969, 33(11), 1669–1672.
http://dx.doi.org/10.1271/bbb1961.33.1669

59. Katz E., Demain A. L. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 1977, 41(2), 449–474.

60. Neu T. R., Poralla K. Emulsifying agent from bacteria isolated during screening for cells with hydrophobic surfaces. Appl. Microbiol. Biotechnol. 1990, 32(5), 521–525.
http://dx.doi.org/10.1007/BF00173721

61. Gross H., Loper J. E. Genomics of secondary metabolite production by Pseudomonas sp. Nat. Prod. Rep. 2009, 26(11), 1408–1446.
http://dx.doi.org/10.1039/b817075b

62. Ongena M., Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008, 16(3), 115–125.
http://dx.doi.org/10.1016/j.tim.2007.12.009

63. Raaijmakers J. M., de Bruijn I., de Kock M. J. Cyclic lipopeptide production by plant-associated Pseudomonas sp.: diversity, activity, biosynthesis, and regulation. Mol. Plant. Microbe. Interact. 2006, 19(7), 699–710.
http://dx.doi.org/10.1094/MPMI-19-0699

64. Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 2005, 56(4), 845–857.
http://dx.doi.org/10.1111/j.1365-2958.2005.04587.x

65. Tsan P., Volpon L., Besson F., Lancelin J. M. Structure and dynamics of surfactin studied by NMR in micellar media. J. Am. Chem. Soc. 2007, 129(7), 1968–1977.
http://dx.doi.org/10.1021/ja066117q

66. Volpon L., Besson F., Lancelin J. M. NMR structure of antibiotics plipastatins A and B from Bacillus subtilis inhibitors of phospholipase A(2). FEBS Lett. 2000, 485(1), 76–80.
http://dx.doi.org/10.1016/S0014-5793(00)02182-7

67. Volpon L., Tsan P., Majer Z., Vass E., Holl?si M., Nogu?ra V., Lancelin J. M., Besson F. NMR structure determination of a synthetic analogue of bacillomycin Lc reveals the strategic role of L-Asn1 in the natural iturinic antibiotics. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2007, 67(5), 1374–1381.
http://dx.doi.org/10.1016/j.saa.2006.10.027

68. Shen H. H., Thomas R. K., Chen C. Y., Darton R. C., Baker S. C., Penfold J. Aggregation of the naturally occurring lipopeptide, surfactin, at interfaces and in solution: an unusual type of surfactant? Langmuir. 2009, 25(7), 4211–4218.
http://dx.doi.org/10.1021/la802913x

69. Hathout Y., Ho Y. P., Ryzhov V., Demirev P., Fenselau C. Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J. Nat. Prod. 2000, 63(11), 1492–1496.
http://dx.doi.org/10.1021/np000169q

70. Hagelin G., Indrevoll B., Hoeg-Jensen T. Use of synthetic analogues in confrmation of structure of the peptide antibiotics maltacines. Int. J. Mass. Spectrom. 2007, 268(2–3), 254–264.
http://dx.doi.org/10.1016/j.ijms.2007.05.011

71. Storm D. R., Rosenthal K. S., Swanson P. E. Polymyxin and related peptide antibiotics. Annu. Rev. Biochem. 1977, V. 46, Р. 723–763.

72. Lee S. C., Kim S. H., Park I. H., Chung S. Y., Choi Y. L. Isolation and structural analysis of bamylocin A, novel lipopeptide from Bacillus amyloliquefaciens LP03 having antagonistic and crude oil-emulsifying activity.  Arch. Microbiol. 2007, 188(4), 307–312.
http://dx.doi.org/10.1007/s00203-007-0250-9

73. Roongsawang N., Hase K., Haruki M., Imanaka T., Morikawa M., Kanaya S. Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. Chem. Biol. 2003, 10(9), 869–880.
http://dx.doi.org/10.1016/j.chembiol.2003.09.004

74. Kruijt M., Tran H., Raaijmakers J. M. Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J. Appl. Microbiol. 2009, 107(2), 546–556.

75. Gross H., Stockwell V. O., Henkels M. D., Nowak-Thompson B., Loper J. E., Ger­wick W. H. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem. Biol. 2007, 14(1), Р. 53–63.

76. Paulsen I. T., Press C. M., Ravel J. Kobayashi D. Y., Myers G. S., Mavrodi D. V., DeBoy R. T., Seshadri R., Ren Q., Madupu R., Dodson R. J., Durkin A. S., Brinkac L. M., Daugherty S. C., Sullivan S. A., Rosovitz M. J., Gwinn M. L., Zhou L., Schneider D. J., Cartinhour S. W., Nelson W. C., Weidman J., Watkins K., Tran K., Khouri H., Pierson E. A., Pierson L. S., Thomashow L. S., Loper J. E. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat. Biotechnol. 2005, 23(7), 873–878.
http://dx.doi.org/10.1038/nbt1110

77. Sinnaeve D., Michaux C., Van Hemel J., Jan Vandenkerckhove, Eric Peys E., Frans A. M. Borremans, Benedikt Sas, Johan Wouters, Martins Jos? C. Structure and X-ray conformation of pseudodesmins A and B, two new cyclic lipodepsipeptides from Pseudomonas bacteria. Tetrahedron. 2009, 65(21), 4173–4181.
http://dx.doi.org/10.1016/j.tet.2009.03.045

78. Berti A. D., Greve N. J., Christensen Q. H., Thomas M. G. Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. tomato DC3000. J. Bacteriol. 2007, 189(17), 6312–6323.
http://dx.doi.org/10.1128/JB.00725-07

79. Fiore A., Mannina L., Sobolev A. P., Salzano A. M., Scaloni A., Grgurina I., Fullone M. R., Gallo M., Swasey C., Fogliano V., Takemoto J. Y. Bioactive lipopeptides of ice-nucleating snow bacterium Pseudomonas syringae strain 31R1. FEMS Microbiol. Lett. 2008, 286(2), 158–165.
http://dx.doi.org/10.1111/j.1574-6968.2008.01247.x

80. Richter M., Willey J. M., S?muth R., G?nther Jung, Hans-Peter Fiedler Streptofactin, a novel biosurfactant with aerial mycelium inducing activity from Streptomyces tendae T? 901/8c. FEMS Microbiol. Lett. 1998, 163(2), 165 — 171.

81. Knoche H. W., Shively J. M. The structure of an ornithine-containing lipid from Thiobacillus thiooxidans. J. Biol. Chem. 1972, 247(1), 170–178.

82. Tahara Y., Yamada Y., Kondo K. A new lysin containing lipid isolated from Agrobacterium tumefaciens. Agric. Biol. Chem. 1976, 40(7), 1449–1450.

83. Tahara Y., Kameda M., Yamada Y., Kondo K. A new lipid; the ornithine and taurine-containing ‘cerilipin’. Agric. Biol. Chem. 1976, 40(1), 243–244.

84. Hino M., Fujie A., Iwamoto T., Hori Y., Hashimoto M., Tsurumi Y., Sakamoto K., Takase S., Hashimoto S. Chemical diversity in lipopeptide antifungal antibiotics. J. Ind. Microbiol. Biotechnol. 2001, 27(3), 157–162.
http://dx.doi.org/10.1038/sj.jim.7000091

85. Hansen D. B., Bumpus S. B., Aron Z. D., Kelleher N. L., Walsh C. T. The loading module of mycosubtilin: an adenylation domain with fatty acid selectivity. J. Am. Chem. Soc. 2007, 129(20), 6366–6367.
http://dx.doi.org/10.1021/ja070890j

86. Tsuge K., Akiyama T., Shoda M. Cloning, sequencing, and characterization of the iturin A operon. J. Bacteriol. 2001, 183(21), 6265–6273.
http://dx.doi.org/10.1128/JB.183.21.6265-6273.2001

87. Finking R., Marahiel M. A. Biosynthesis of nonribosomal peptides1. Annu. Rev. Microbiol. 2004, V. 58, 453–488.

88. Fischbach M. A., Walsh C. T. Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 2006, 106(8), 3468–3496.

89. Marahiel M. A., Essen L. O. Nonribosomal peptide synthetases: mechanistic and structural aspects of essential domains. Meth. Enzymol. 2009, V. 458, Р. 337–351.

90. Felnagle E. A., Jackson E. E., Chan Y. A., Podevels A. M., Berti A. D., McMahon M. D., Thomas M. G. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol. Pharm. 2008, 5(2), 191–211.
http://dx.doi.org/10.1021/mp700137g

91. Roongsawang N., Lim S. P., Washio K., Takano K., Kanaya S., Morikawa M. Phylogenetic analysis of condensation domains in the nonribosomal peptide synthetases. FEMS Microbiol. Lett. 2005, 252(1), 143–151.
http://dx.doi.org/10.1016/j.femsle.2005.08.041

92. Samel S. A., Wagner B., Marahiel M. A., Essen L. O. The thioesterase domain of the fengycin biosynthesis cluster: a structural base for the macrocyclization of a non-ribosomal lipopeptide. J. Mol. Biol. 2006, 359(4), 876–889.
http://dx.doi.org/10.1016/j.jmb.2006.03.062

93. Schwarzer D., Mootz H. D., Marahiel M. A. Exploring the impact of different thioesterase domains for the design of hybrid peptide synthetases. Chem. Biol. 2001, 8(10), 997–1010.
 http://dx.doi.org/10.1016/S1074-5521(01)00068-0

94. Trauger J. W., Kohli R. M., Walsh C. T. Cyclization of backbone-substituted peptides catalyzed by the thioesterase domain from the tyrocidine nonribosomal peptide synthetase. Biochemistry. 2001, 40(24), 7092–7098.
http://dx.doi.org/10.1021/bi010035r

95. Koglin A., L?hr F., Bernhard F., Rogov V. V., Frueh D. P., Strieter E. R., Mofid M. R., G?ntert P., Wagner G., Walsh C. T., Marahiel M. A., D?tsch V. Structural basis for the selectivity of the external thioesterase of the surfactin synthetase. Nature. 2008, 454(7206), 907–911.
http://dx.doi.org/10.1038/nature07161

96. Sieber S. A., Marahiel M. A. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem. Rev. 2005, 105(2), 715–738.
http://dx.doi.org/10.1021/cr0301191

97. Peypoux F., Bonmatin J. M., Wallach J. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 1999, 51(5), 553–563.
http://dx.doi.org/10.1007/s002530051432

98. Balibar C. J., Vaillancourt F. H., Walsh C. T. Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Chem. Biol. 2005, 12(11), 1189–1200.
http://dx.doi.org/10.1016/j.chembiol.2005.08.010

99. De Bruijn I., de Kock M. J., de Waard P., van Beek T. A., Raaijmakers J. M. Massetolide A biosynthesis in Pseudomonas fluorescens. J. Bacteriol. 2008, 190(8), 2777–2789.
http://dx.doi.org/10.1128/JB.01563-07

100. De Souza J. T., De Boer M., De Waard P., van Beek T. A., Raaijmakers J. M. Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl. Environ. Microbiol. 2003, 69(12), 7161–7172.
http://dx.doi.org/10.1128/AEM.69.12.7161-7172.2003

101. Haas D., D?fago G. Biological control of soil-borne pathogens by fluorescent Рseudomonads. Nat. Rev. Microbiol. 2005, 3(4), 307–319.

102. Heeb S., Haas D. Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol. Plant. Microbe Interact. 2001, 14(12), 1351–1363.
http://dx.doi.org/10.1094/MPMI.2001.14.12.1351

103. Wang N., Lu S. E., Records A. R., Gross D. C. Characterization of the transcriptional activators SalA and SyrF, Which are required for syringomycin and syringopeptin production by Pseudomonas syringae pv. Syringae. J. Bacteriol. 2006, 188(9), 3290–3298.
http://dx.doi.org/10.1128/JB.188.9.3290-3298.2006

104. Koch B., Nielsen T. H., Sоrensen D., Andersen J. B., Christophersen C., Molin S., Givskov M., Sorensen J., Nybroe O. Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet seed exudate via the Gac two-component regulatory system. Appl. Environ. Microbiol. 2002, 68(9), 4509–4516.

105. Venturi V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol. Rev. 2006, 30(2), 274–291.
http://dx.doi.org/10.1111/j.1574-6976.2005.00012.x

106. Cui X., Harling R., Mutch P., Darling D. Identifcation of N-3-hydroxyoctanoyl-homoserine lactone production in Pseudomonas fuorescens 5064, pathogenic to broccoli, and controlling biosurfactant production by quorum sensing. Eur. J. Plant. Pathol. 2005, 111(4), 297–308.
http://dx.doi.org/10.1007/s10658-004-4171-z

107. Dubern J. F.,berg G. V. The ppuIrsaL-ppuR quorum-sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvins I and II. J. Bacte­riol. 2006, 188(8), 2898–2906.
http://dx.doi.org/10.1128/JB.188.8.2898-2906.2006

108. De Bruijn I., Raaijmakers J. M. Diversity and functional analysis of LuxR-type transcriptional regulators of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens. Appl. Environ. Microbiol. 2009, 75(14), 4753–4761.
http://dx.doi.org/10.1128/AEM.00575-09

109. Dubern J. F., Coppoolse E. R., Stiekema W. J., Bloemberg G. V. Genetic and functional characterization of the gene cluster directing the biosynthesis of putisolvin I and II in Pseudomonas putida strain PCL1445. Microbiology, 2008, 154(7), 2070–2083.
http://dx.doi.org/10.1099/mic.0.2008/016444-0

110. Lu S. E., Scholz-Schroeder B. K., Gross D. C. Characterization of the salA, syrF, and syrG regulatory genes located at the right border of the syringomycin gene cluster of Pseudomonas syringae pv. Syringae. Mol. Plant. Microbe Interact. 2002, 15(1), 43–53.
http://dx.doi.org/10.1094/MPMI.2002.15.1.43

111. Dubern J. F., Lagendijk E. L., Lugtenberg B. J., Bloemberg G. V. The heat shock genes dnaK, dnaJ, and grpE are involved in regulation of putisolvin biosynthesis in Pseudomonas putida PCL1445. J. Bacteriol. 2005, 187(17), 5967–5976.
http://dx.doi.org/10.1128/JB.187.17.5967-5976.2005

112. De Bruijn I., Raaijmakers J. M. Regulation of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens by the ClpP protease. J. Bacteriol. 2009, 191(6), 1910–1923.
http://dx.doi.org/10.1128/JB.01558-08

113. Duitman E. H., Wyczawski D., Boven L. G., Venema G., Kuipers O. P., Hamoen L. W. Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl. Environ. Microbiol. 2007, 73(11), 3490–3496.
http://dx.doi.org/10.1128/AEM.02751-06

114. M?der U., Antelmann H., Buder T., Dahl M. K., Hecker M, Homuth G. Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics. Mol. Genet. Genomics. 2002, 268(4), 455–467.
http://dx.doi.org/10.1007/s00438-002-0774-2

115. Hayashi K., Ohsawa T., Kobayashi K., Ogasawara N., Ogura M. The H2O2 stress-responsive regulator PerR positively regulates srfA expression in Bacillus subtilis. J. Bacteriol. 2005, 187(19), 6659–6667.
http://dx.doi.org/10.1128/JB.187.19.6659-6667.2005

116. Steller S., Sokoll A., Wilde C., Bernhard F, Franke P., Vater J. Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein. Biochemistry. 2004, 43(35), 1131–1143.
http://dx.doi.org/10.1021/bi0493416

117. Koumoutsi A., Chen X. H., Vater J., Borriss R. DegU and YczE positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42. Appl. Environ. Microbiol. 2007, 73(21), 6953–6964.
http://dx.doi.org/10.1128/AEM.00565-07

118. Tsuge K., Matsui K., Itaya M. Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment. J. Biotechnol. 2007, 129(4), 592–603.
http://dx.doi.org/10.1016/j.jbiotec.2007.01.033

119. Vollenbroich D., Pauli G., Ozel M., Vater J. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl. Environ. Microbiol. 1997, 63(1), 44–49.

120. Moyne A. L., Shelby R., Cleveland T. E., Tuzun S. Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J. Appl. Microbiol. 2001, 90(4), 622–629.
http://dx.doi.org/10.1046/j.1365-2672.2001.01290.x

121. De Bruijn I., de Kock M. J., Yang M., de Waard P., van Beek T. A., Raaijmakers J. M. Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol. Microbiol. 2007, 63(2), 417–428.
http://dx.doi.org/10.1111/j.1365-2958.2006.05525.x

122. De Souza J. T., Mazzola M., Raaijmakers J. M. Conservation of the response regulator gene gacA in Pseudomonas species. Environ. Microbiol. 2003, 5(12), 1328–1340.
http://dx.doi.org/10.1111/j.1462-2920.2003.00438.x

123. Kim B. S., Lee J. Y., Hwang B. K. In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest. Manag. Sci. 2000. 56(12), 1029–1035.
 http://dx.doi.org/10.1002/1526-4998(200012)56:12<1029::AID-PS238>3.0.CO;2-Q

124. Tran H., Kruijt M., Raaijmakers J. M. Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam. J. Appl. Microbiol. 2008, 104(3), 839–851.
http://dx.doi.org/10.1111/j.1365-2672.2007.03618.x

125. Van de Mortel J. E., Tran H., Govers F., Raaijmakers J. M. Cellular responses of the late blight pathogen Phytophthora infestans to cyclic lipopeptide surfactants and their dependence on G proteins. Appl. Environ. Microbiol. 2009. 75(15), 4950–4957.
http://dx.doi.org/10.1128/AEM.00241-09

126. Yoo D. S., Lee B. S., Kim E. K. Characteristics of microbial biosurfactant as an antifungal agent against plant pathogenic fungus. J. Microbiol. Biotechnol. 2005, 15(6), 1164–1169.

127. Rоnn R., McCaig A. E., Griffiths B. S., Prosser J. I. Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl. Environ. Microbiol. 2002, 68(12), 6094–6105.

128. Matz C., Kjelleberg S. Off the hookhow bacteria survive protozoan grazing. Trends Microbiol. 2005, 13(7), 302–307.
http://dx.doi.org/10.1016/j.tim.2005.05.009

129. Jousset A., Lara E., Wall L. G., Valverde C. Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl. Environ. Microbiol. 2006, 72(11), 7083–7090.
http://dx.doi.org/10.1128/AEM.00557-06

130. Matz C., Deines P., Boenigk J., Arndt H., Eberl L., Kjelleberg S., J?rgens K. Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl. Environ. Microbiol. 2004, 70(3), 1593–1599.
http://dx.doi.org/10.1128/AEM.70.3.1593-1599.2004

131. Pradel E., Zhang Y., Pujol N, Matsuyama T., Bargmann C. I., Ewbank J. J. Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc. Natl. Acad. Sci. U S A. 2007, 104(7), 2295–2300.
http://dx.doi.org/10.1073/pnas.0610281104

132. Mazzola M., de Bruijn I., Cohen M. F., Raaijmakers J. M. Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Appl. Environ. Microbiol. 2009, 75(21), 6804–6811.
http://dx.doi.org/10.1128/AEM.01272-09

133. Daniels R., Reynaert S., Hoekstra H., Verreth С., Janssens J., Braeken K., Fauvart M., Beullens S., Heusdens C., Lambrichts I., De Vos D. E., Vanderleyden J., Vermant J., Michiels J. Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc. Natl. Acad. Sci. USA. 2006, 103(40), 14965–14970.

134. Andersen J. B., Koch B., Nielsen T. H., Nybroe O., Christophersen C., S?rensen J., Molin S., Givskov M. Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology. 2003, 149(1), 37–46.
http://dx.doi.org/10.1099/mic.0.25859-0

135. Kearns D. B., Losick R. Swarming motility in undomesticated Bacillus subtilis. Mol. Microbiol. 2003, 49(3), 581–590.
http://dx.doi.org/10.1046/j.1365-2958.2003.03584.x

136. Kinsinger R. F., Shirk M. C., Fall R. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J. Bacteriol. 2003, 185(18), 5627–5631.
http://dx.doi.org/10.1128/JB.185.18.5627-5631.2003

137. Nielsen T. H., Nybroe O., Koch B., Hansen M., S?rensen J. Genes involved in cyclic lipopeptide production are important for seed and straw colonization by Pseudomonas sp. strain DSS73. Appl. Environ. Microbiol. 2005, 71(7), 4112–4116.
http://dx.doi.org/10.1128/AEM.71.7.4112-4116.2005

138. Tran H., Ficke A., Asiimwe T., H?fte M., Raaijmakers J. M. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol. 2007, 175(4), 731–742.
http://dx.doi.org/10.1111/j.1469-8137.2007.02138.x

139. Koumoutsi A., Chen X. H., Henne A., Liesegang H., Hitzeroth G., Franke Р., Vater J., Borriss R. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 2004, 186(4), 1084–1096.

140. Hofemeister J., Conrad B., Adler B., Hofemeister B., Feesche J., Kucheryava N., Steinborn G., Franke P., Grammel N., Zwintscher A., Leenders F., Hitzeroth G., Vater J. Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol. Genet. Genomics. 2004, 272(4), 363–378.
http://dx.doi.org/10.1007/s00438-004-1056-y

141. L?pez D., Vlamakis H., Losick R., Kolter R. Cannibalism enhances biofilm development in Bacillus subtilis. Mol. Microbiol. 2009, 74(3), 609–618.
http://dx.doi.org/10.1111/j.1365-2958.2009.06882.x

142. Nitschke M., Ara?jo L. V., Costa S. G., Pires R. C., Zeraik A. E., Fernandes A. C., Freire D. M., Contiero J. Surfactin reduces the adhesion of food-borne pathogenic bacteria to solid surfaces. Lett. Appl. Microbiol. 2009, 49(2), 241–247.
http://dx.doi.org/10.1111/j.1472-765X.2009.02646.x

143. Mireles J. R., Toguchi A., Harshey R. M. Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J. Bacteriol. 2001, 183(20), 5848–5854.
http://dx.doi.org/10.1128/JB.183.20.5848-5854.2001

144. Straight P. D., Willey J. M., Kolter R. Interactions between Streptomyces coe­li­color and Bacillus subtilis: Role of surfactants in raising aerial structures. J. Bacteriol. 2006, 188(13), 4918–4925.
http://dx.doi.org/10.1128/JB.00162-06

145. Janek T., Lukaszewicz M., Krasowska A. Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol. 2012,
doi: 10.1186/1471-2180-12-24.

146. Scholz-Schroeder B. K., Hutchison M. L., Grgurina I., Gross D. C. The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. Mol. Plant. Microbe. Interact. 2001, 14(3), 336–348.
http://dx.doi.org/10.1094/MPMI.2001.14.3.336

147. Hildebrand P. D., Braun P. G., McRae K. B., Lu X. Role of the biosurfactant viscosin in broccoli head rot caused by a pectolytic strain of Pseudomonas fuorescens. Can. J. Plant. Pathol. 1998, 20(3). 296–303.
http://dx.doi.org/10.1080/07060669809500396

148. Ongena M., Jourdan E., Adam A., Paquot M., Brans A., Joris B., Arpigny J. L., Thonart P. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 2007, 9(4), 1084–1090.
http://dx.doi.org/10.1111/j.1462-2920.2006.01202.x

149. Bl?e E. Impact of phyto-oxylipins in plant defense. Trends Plant. Sci. 2002. 7(7), 315–322.
http://dx.doi.org/10.1016/S1360-1385(02)02290-2

150. Wang C. L., Ng T. B., Yuan F., Liu Z. K., Liu F. Induction of apoptosis in human leukemia K562 cells by cyclic lipopeptide from Bacillus subtilis natto T-2. Peptides. 2007, 28(7), 1344–1350.
http://dx.doi.org/10.1016/j.peptides.2007.06.014

151. Kim S. Y., Kim J. Y., Kim S. H., Bae H. J., Yi H., Yoon S. H., Koo B. S., Kwon M., Cho J. Y., Lee C. E., Hong S. Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Lett. 2007, 581(5), 865–871.
http://dx.doi.org/10.1016/j.febslet.2007.01.059

152. Grangemard I., Wallach J., Maget-Dana R., Peypoux F. Lichenysin: a more efficient cation chelator than surfactin. Appl. Biochem. Biotechnol. 2001, 90(3), 199–210.
 http://dx.doi.org/10.1385/ABAB:90:3:199

153. Rautenbach M., Swart P., van der Merwe M. J. The interaction of analogues of the antimicrobial lipopeptide, iturin A2, with alkali metal ions. Bioorg. Med. Chem. 2000, 8(11), 2539–2548.
http://dx.doi.org/10.1016/S0968-0896(00)00186-3

154. Banat I. M., Makkar R. S., Cameotra S. S. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 2000, 53(5), 495–508.
http://dx.doi.org/10.1007/s002530051648

155. Phale P. S., Basu A., Majhi P. D., Deveryshetty J., Vamsee-Krishna C., Shrivastava R. Metabolic diversity in bacterial degradation of aromatic compounds. OMICS. 2007, 11(3), 252–279.
http://dx.doi.org/10.1089/omi.2007.0004

156. Velraeds M. M., van der Mei H. C., Reid G., Busscher H. J. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates. Appl. Environ. Microbiol. 1996, 62(6), 1958–1963.

157. Busscher H. J., van Hoogmoed C. G., Geertsema-Doornbusch G. I., van der Kuijl-Booij M., van der Mei H. C. Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida sp. on silicone rubber. Appl. Environ. Microbiol. 1997, 63(10), 3810–3817.

158. Gan B. S., Kim J., Reid G., Cadieux P., Howard J. C. Lactobacillus fermentum RC-14 inhibits Staphylococcus aureus infection of surgical implants in rats. J. Infect. Dis. 2002, 185(9), 1369–1372.
http://dx.doi.org/10.1086/340126

159. Rodrigues L., van der Mei H., Banat I. M., Teixeira J., Oliveira R. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A. FEMS Immunol. Med. Microbiol. 2006, 46(1), 107–112.
http://dx.doi.org/10.1111/j.1574-695X.2005.00006.x

160. Rodrigues L., van der Mei H. C., Teixeira J., Oliveira R. Influence of biosurfactants from probiotic bacteria on formation of biofilms on voice prostheses. Appl. Environ. Microbiol. 2004, 70(7), 4408–4410.
http://dx.doi.org/10.1128/AEM.70.7.4408-4410.2004

161. Rodrigues L. R., Teixeira J. A., van der Mei H. C., Oliveira R. Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A. Colloids. Surf. B. Biointerfaces. 2006, 53(1), 105–112.
http://dx.doi.org/10.1016/j.colsurfb.2006.08.009

162. Rodrigues L. R., Teixeira J. A., van der Mei H. C., Oliveira R. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Surf. B. Biointerfaces. 2006, 49(1), 79–86.
http://dx.doi.org/10.1016/j.colsurfb.2006.03.003

163. Austin B. Novel pharmaceutical compounds from marine bacteria. J. Appl. Bacteriol. 1989, 67(5), 461–470.
http://dx.doi.org/10.1111/j.1365-2672.1989.tb02517.x

164. Jensen P. R., Fenical W. Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu. Rev. Microbiol. 1994, V. 48, 559–584.
http://dx.doi.org/10.1146/annurev.mi.48.100194.003015

165. Bertrand J. C., Bonin P., Goutx M., Mille G. Biosurfactant production by marine microorganisms: potential application to fighting hydrocarbon marine pollution. J. Mar. Biotechnol. 1993, 1(3), 125–129.

166. Weiner R. M. Biopolymers from marine prokaryotes. Trends. Biotechnol. 1997, 15(10), 390–394.
 http://dx.doi.org/10.1016/S0167-7799(97)01099-8

167. Weiner R. M., Colwell R. R., Jarman R. N., Stein D. C., Somerville C. C., Bonar D. B. Applications of biotechnology to the production, recovery and use of marine polysaccharides. Nat. Biotechnol. 1985, 3(10), 899–902.
http://dx.doi.org/10.1038/nbt1085-899

168. Maneerat S. Biosurfactants from marine microorganisms. Songklanakarin J. Sci. Technol. 2005, 27(6), 1263–1272.

169. Nerurkar A. S., Hingurao K. S., Suthar H. G. Bioemulsfiers from marine microorganisms. J. Sci. Ind. Res. 2009, 68(4), 273–277.

170. Zhenming C., Yan F. Exopolysaccharides from marine bacteria. J. Ocean. Univ. China. 2005, 4(1), 67–74.
http://dx.doi.org/10.1007/s11802-005-0026-2

171. Das P., Mukherjee S., Sen R. Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J. Appl. Microbiol. 2008, 104(6), 1675–1684.
http://dx.doi.org/10.1111/j.1365-2672.2007.03701.x

172. Das P., Mukherjee S., Sen R. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere. 2008, 72(9), 1229–1234.
http://dx.doi.org/10.1016/j.chemosphere.2008.05.015

173. Das P., Mukherjee S., Sen R. Substrate dependent production of extracellular biosurfactant by a marine bacterium. Bioresour. Technol. 2009, 100(2), 1015–1019.
http://dx.doi.org/10.1016/j.biortech.2008.07.015

174. Maneerat S., Nitoda T., Kanzaki H., Kawai F. Bile acids are new products of a marine bacterium, Myroides sp. strain SM1. Appl. Microbiol. Biotechnol. 2005, 67(5), 679–683.
http://dx.doi.org/10.1007/s00253-004-1777-1

175. Peng F., Liu Z., Wang L., Shao Z. An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. Appl. Microbiol. Biotechnol. 2007, 102(6), 1603–1611.
http://dx.doi.org/10.1111/j.1365-2672.2006.03267.x

176. Pepi M., Ces?ro A., Liut G., Baldi F. An antarctic psychrotrophic bacterium Halomonas sp. ANT-3b, growing on n-hexa­decane, produces a new emulsyfying glycolipid. FEMS Microbiol. Ecol. 2005, 53(1), 157–166.
http://dx.doi.org/10.1016/j.femsec.2004.09.013

177. Thavasi R., Jayalakshmi S., Balasubramanian T., Banat I. M. Biodegradation of crude oil by nitrogen fixing marine bacteria Azotobacter chroococcum. Res. J. Microbiol. 2006, 1(5), 401–408.
http://dx.doi.org/10.3923/jm.2006.401.408

178. Thavasi R., Jayalakshmi S., Balasubramanian T., Banat I. M. Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake. Lett. Appl. Microbiol. 2007, 45(6), 686–691.
http://dx.doi.org/10.1111/j.1472-765X.2007.02256.x

179. Thavasi R., Subramanyam Nambaru V. R., Jayalakshmi S., Balasubramanian T., Banat I. M. Biosurfactant production by Azotobacter chroococcum isolated from the marine environment. Mar. Biotechnol. (NY). 2009, 11(5), 551–556.
http://dx.doi.org/10.1007/s10126-008-9162-1