Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2018 № 6 ELECTRONIC EXPERT SYSTEMS FOR BIOLOGY AND MEDICINE O. M. Klyuchko
Print PDF

ISSN 2410-776X (Onine)
ISSN 2410-7751 (Print)

"Biotechnologia Acta" V. 11, No 6, 2018 
https://doi.org/10.15407/biotech11.06.005
Р. 5-28, Bibliography 179, English
Universal Decimal Classification: 004:591.5:612:616-006

ELECTRONIC EXPERT SYSTEMS FOR BIOLOGY AND MEDICINE


Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv
The purpose of the present work was to alalyse the prototypes of information expert systems, their structure, functions and practical application, and to develop a new one for solving practical problems in biotechnology, laboratory practice and environmental protection. The observed prototypes were developed for the use in genetic studies, agricultural production, nature protection from pests and environmental pollutants, for works in medicine, and etc. During the work, following methods were used such as methods of comparative research of the samples of technical devices, imitation and program modeling, which were based on numerical results obtained in experiments with the recording of chemosensitive transmembrane electrical currents in neurons in voltage clamp mode. As a result, an original expert system was developed. It was coupled with a detector group, databases and interface. The developed expert system was able to distinguish automatically the certain types of chemicals at the input, to display their identification data and, if necessary, the reports about their harmfulness. Conclusions were done about the practical value of these data for the elaboration of new electronic expert systems for monitoring the presence of harmful substances in the environment. It was also discussed the possibility of developed expert system application for new methods of qualitative and quantitative analysis of some organic compounds.

Key words: biological and medical expert systems, electronic informational systems, bioinformatics, databases.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
  • References
    • 1. Klyuchko O. M. Information and computer technologies in biology and medicine. Kyiv: NAU-druk. 2008, 252 p. (In Ukrainian).

      2. Klyuchko O. М. On the mathematical methods in biology and medicine. Biotechnol. acta. 2017, 10 (3), 31–40. https://doi.org/10.15407/biotech10.03.031

      3. Klyuchko O. М. Application of artificial neural networks method in biotechnology. Biotechnol. acta. 2017, 10 (4), 5–13.https://doi.org/10.15407/biotech10.04.005

      4. Klyuchko O. М. Cluster analysis in biotechnology. Biotechnol. acta. 2017, 10 (5), 5–18. https://doi.org/10.15407/biotech10.05.005

      5. Klyuchko O. М. Technologies of brain images processing. Biotechnol. acta. 2017, 10 (6), 5–17. https://doi.org/10.15407/biotech10.05.005

      6. Klyuchko O. М., Onopchuk Yu. M. Some trends in mathematical modeling for biotechnology. Biotechnol. acta. 2018, 11 (1), 39–57. https://doi.org/10.15407/biotech11.01.039

      7. Klyuchko O. М. Electronic information systems in biotechnology. Biotechnol. acta. 2018, 11 (2), 5–22. https://doi.org/10.15407/biotech11.02.005

      8. Klyuchko O. М. Information computer technologies for biotechnology: electronic medical information systems. Biotechnol. acta. 2018, 11 (3), 5–26. https://doi.org/10.15407/biotech11.03.005

      9. Klyuchko O. М., Klyuchko Z. F. Electronic databases for Arthropods: methods and applications. Biotechnol. acta. 2018, 11 (4), 28–49. https://doi.org/10.15407/biotech11.04.028

      10. Klyuchko O. М., Klyuchko Z. F. Electronic information systems for monitoring of populations and migrations of insects. Biotechnol. acta. 2018, 11 (5), 5–25. https://doi.org/10.15407/biotech11.05.005

      11. Judith M. Hushon. Overview of Environmental Expert Systems. Expert Systems for Environmental Applications. Chapt.1, P. 1–24. https://doi.org/10.1021/bk-1990-0431.ch001; ACS Symposium Series, V. 431. Publ. 05.06.1990. https://pubs.acs.org/doi/abs/10.1021/bk-1990-0431.ch001

      12. Glenn F. Osborne, Simon S. M. Chin, Paul McDonald, Scott Schneider. Artificial intelligence system for genetic analysis. Patent US 8693751B2. Priority date: 1999-08-27, 2014-04-08 Grant. https://patents.google.com/patent/US8693751

      13. Roland Eils. Expert system for classification and prediction of genetic diseases Patent US, JP, CA, WO2002047007A3. Priority date: 2000-12-07.WOApplication2002-12-12. https://patents.google.com/patent/WO2002047007A2

      14. Prasad S. Kodukula, Charles R. Stack. Water treatment monitoring system. Patent US 6845336B2. Priority date: 25-06-2002; Grant: 01-18-2005. https://patents.google.com/patent/US6845336

      15. Klyuchko O. M., Pashkivsky A. O., Sheremet D. Y. Computer modeling of some nanoelements for radio and television systems. Electr. Contr. Syst. 2012, 3 (33), 102–107. (In Ukrainian).

      16. Klyuchko O. M., Hayrutdinov R. R. Modeling of electrical signals propagation in neurons and its nanostructures. Electr. Contr. Syst. 2011, 2 (28), 120–124. (In Ukrainian).

      17. Trinus K. F., Klyuchko O. M. Mediators influence on motoneurons retrogradly marked by primulin. Physiol. J. 1984, 30 (6), 730–733. (In Russian).

      18. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Algorithmic and program support for optimization of interval hypoxic training modes selection of pilots. Electr. Contr. Syst. 2017, 2 (52), 85–93. https://doi.org/10.18372/1990-5548.52.11882

      19. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Mathematic and program models for investigation of reliability of operator professional activity in “Human-Machine” systems. Electr. Contr. Syst. 2017, 1 (51), 105–113.

      20. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Mathematical model for research of organism restoring for operators of continuously interacted systems. Electr. Contr. Syst. 2016, 3 (49), 100–105. https://doi.org/10.18372/1990-5548.49.11245

      21. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Investigation of reliability of operators work at fluctuating temperature conditions. Electr. Contr. Syst. 2016, 2 (48), 132–139. https://doi.org/10.18372/1990-5548.48.11227

      22. Plakhotnij S. A., Klyuchko O. M., Krotinova M. V. Information support for automatic industrial environment monitoring systems. Electr. Contr. Syst. 2016, 1 (47), 19–34. https://doi.org/10.18372/1990-5548.47.10266

      23. Onopchuk Yu. M., Aralova N. I., Klyuchko O. M., Beloshitsky P. V. Mathematic models and integral estimation of organism systems reliability in extreme conditions. Electr. Contr. Syst. 2015, 4 (46), 109–115. https://doi.org/10.18372/1990-5548.46.9978

      24. Onopchuk Yu. M., Aralova N. I., Klyuchko O. M., Beloshitsky P. V. Integral estimations of human reliability and working capacity in sports wrestling. J. Engin. Acad. 2015, N 3, P. 145–148.

      25. Klyuchko O. M., Shutko V. N., Navrotskyi D. O., Mikolushko A. M. The set of program models for ecological monitoring technical system based on principles of biophysics. Electr. Contr. Syst. 2014, 4 (42), 135–142. https://doi.org/10.18372/1990-5548.42.8834

      26. Klyuchko O. M., Sheremet D. Yu. Computer simulation of biological nanogenerator functions. Electr. Contr. Syst. 2014, 2 (40), 103–111.

      27. Klyuchko O. M., Shutko V. N. Computer modeling of auto-oscillating phenomena in neuron complexes. Electr. Contr. Syst. 2014, 1 (39), 127–132.

      28. Klyuchko O. M., Sheremet D. Yu. Computer modeling of biologic voltage-activated nanostructures. Electr. Contr. Syst. 2014, 1 (39), 133–139.

      29. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. M. Radiation damage of organism and its correction in conditions of adaptation to high-mountain meteorological factors. Bull. Nat. Acad. Sci. Ukr. 2010, N 1, P. 224–231. (In Ukrainian).

      30. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu., Makarenko M. V. Estimation of psychophysiological functions of a person and operator work in extreme conditions. Bull. Nat. Acad. Sci. Ukr. 2009, N 3, P. 96–104. (In Ukrainian).

      31. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu., Kolchinska A. Z. Results of research of higher nervous activity problems by Ukrainian scientists in Prielbrussie. Bull. Nat. Acad. Sci. Ukr. 2009, N 2, P. 105–112. (In Ukrainian).

      32. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of structural and functional interdependencies by Ukrainian scientists in Prielbrussie. Bull. Nat. Acad. Sci. Ukr. 2009, N 1, P. 61–67. (In Ukrainian).

      33. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of highlands factors influence on health and longevity by Ukrainian scientists in Prielbrussie. Bull. Nat. Acad. Sci. Ukr. 2008, N 4, P. 108–117. (In Ukrainian).

      34. Onopchuk Yu. M., Klyuchko O. M., Beloshitsky P. V. Development of mathematical models basing on researches of Ukrainian scientists at Elbrus. Bull. Nat. Acad. Sci. Ukr. 2008, N 3, P. 146–155. (In Ukrainian).

      35. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of adaptation problems by Ukrainian scientists in Prielbrussie. Bull. Nat. Acad. Sci. Ukr. 2008, N 1, P. 102–108. (In Ukrainian).

      36. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of hypoxia problems by Ukrainian scientists in Elbrus region. Bull. Nat. Acad. Sci. Ukr. 2007, N 3–4, P. 44–50. (In Ukrainian).

      37. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of medical and biological research of Ukrainian scientists at Elbrus. Bull. Nat. Acad. Sci. Ukr. 2007, N 2, P. 10–16. (In Ukrainian).

      38. Belan P., Gerasimenko O., Petersen O. H., Tepikin A. Localization of Ca2+ extrusion sites in pancreatic acinar cells. J. Biol. Chem. 1996, V. 271, P. 7615–7619. https://doi.org/10.1074/jbc.271.13.7615

      39. Belan P. V., Gerasimenko O. V., Tepikin A. V., Petersen O. H. Extracellular Ca2+ spikes due to secretory events in salivary gland cells. J. Biol. Chem. 1998, V. 273, P. 4106–4111. https://doi.org/10.1074/jbc.273.7.4106

      40. Jabs R., Pivneva T., Huttmann K. Synaptic transmission onto hyppocampal glial cells with hGFAP promoter activity. J. Cell Sci. 2005, V. 118, P. 3791–3803. https://doi.org/10.1242/jcs.02515

      41. Gavrilovich M. Spectra image processing and application in biotechnology and pathology. Dissertation for Ph.D. Acta Universitatis Upsaliensis. Upsala. 2011, 63 p.

      42. Perner P., Salvetti O. Advances in Mass Data Analysis of Images and Signals in Medicine, Biotechnology, Chemistry and Food Industry. Third International Conference, Leipzig, (Germany): Springer, 2008, Proceedings. 2008, 173 p.

      43. Baert P., Meesen G., De Schynkel S., Poffijn A., Oostveldt P. V. Simultaneous in situ profiling of DNA lesion endpoints based on image cytometry and a single cell database approach. Micron. 2005, 36 (4), 321–330. https://doi.org/10.1016/j.micron.2005.01.005

      44. Berks G., Ghassemi A., von Keyserlingk D. G. Spatial registration of digital brain atlases based on fuzzy set theory. Comp. Med. Imag. Graph. 2001, 25 (1), 1–10. https://doi.org/10.1016/S0895-6111(00)00038-0

      45. Nowinski W. L., Belov D. The Cerefy Neuroradiology Atlas: a Talairach–Tournoux atlas-based tool for analysis of neuroimages available over the internet. NeuroImage. 2003, 20 (1), 50–57. https://doi.org/10.1016/S1053-8119(03)00252-0

      46. Chaplot S., Patnaik L. M., Jagannathan N. R. Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed. Sign. Proc. Contr. 2006, 1 (1), 86–92. https://doi.org/10.1016/j.bspc.2006.05.002

      47. Kovalev V. A., Petrou M., Suckling J. Detection of structural differences between the brains of schizophrenic patients and controls. Psychiatry Research: Neuroimaging. 2003, 124 (3), 177–189. https://doi.org/10.1016/S0925-4927(03)00070-2

      48. Araújo T. et al. Classification of breast cancer histology images using Convolutional Neural Networks. PloS One. 2017, 12 (6), e0177544. https://doi.org/10.1371/journal.pone.0177544

      49. Vecht-Lifshitz S. E., Ison A. P. Biotechnological applications of image analysis: present and future prospects. J. Biotechnol. 1992, 23 (1), 1–18. https://doi.org/10.1016/0168-1656(92)90096-R

      50. Toga A. W., Thompson P. M. The role of image registration in brain mapping. Image Vis. Comp. 2001, 19 (1–2), 3–24. https://doi.org/10.1016/S0262-8856(00)00055-X

      51. Shu-Hsien Liao. Expert system methodologies and applications – a decade review from 1995 to 2004. Expert Systems with Applications. 2005, 28 (1), 93–103. https://doi.org/10.1016/j.eswa.2004.08.003

      52. Weiskopf N., Scharnowski F., Veit R., Goebel R., Birbaumer N, Mathiak K. Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). J. Physiol. Paris. 2004, 98 (4–6), 357–373. https://doi.org/10.1016/j.jphysparis.2005.09.019

      53. Yan H., Jiang Y., Zheng J., Fu B., Xiao S., Peng C. The internet-based knowledge acquisition and management method to construct largescale distributed medical expert systems. Computer methods and programs in biomedicine. 2004, 74 (1), 1–10. https://doi.org/10.1016/S0169-2607(03)00076-2

      54. Yi M. Y., J. D. Jackson, J. S. Park, Probst J. C. Understanding information technology acceptance by individual professionals: Toward an integrative view. Information & Management. 2006, 43 (3), 350–363. https://doi.org/10.1016/j.im.2005.08.006

      55. Young R. Genetic toxicology: web resources. Toxicology. 2002, 173 (1–2), 103–121. https://doi.org/10.1016/S0300-483X(02)00026-4

      56. Yu C. Methods in biomedical ontology. J. Biomed. Inform. 2006, 39 (3), 252–266. https://doi.org/10.1016/j.jbi.2005.11.006

      57. Zhang J., Sun J., Yang Y., Chen X., Meng L., Lian P. W eb-based electronic patient records for collaborative medical applications. Computerized Medical Imaging and Graphics. 2005, 29 (2–3), 115–124. https://doi.org/10.1016/j.compmedimag.2004.09.005

      58. Zhoua X., Weib J., Xub C.-Z. Quality-ofservice differentiation on the Internet: A taxonomy. Journal of Network and Computer Applications. 2007, 30 (1), 354–383. https://doi.org/10.1016/j.jnca.2005.07.001

      59. Zimowska G. J., Handler A. M.. Highly conserved piggyBac elements in Noctuidae species of Lepidoptera. Insect Biochemistry and Molecular Biology. 2006, 36 (5). 421–428. https://doi.org/10.1016/j.ibmb.2006.03.001

      60. Carro S. A., Scharcanski J. A framework for medical visual information exchange on the WEB. Computers in Biology and Medicine. 2006, 36 (4), 327–338. https://doi.org/10.1016/j.compbiomed.2004.10.004

      61. Chakravarty M. M., Bertrand G., Hodge C. P., Sadikot A. F., Collins D. L. The creation of a brain atlas for image guided neurosurgery using serial histological data. NeuroImage. 2006, 30 (2), 359–376. https://doi.org/10.1016/j.neuroimage.2005.09.041

      62. Dikshit A., Wu D., Wu C., Zhao W. An online interactive simulation system for medical imaging education. Comp. Med. Imag. Graph. 2005, 29 (6), 395–404. https://doi.org/10.1016/j.compmedimag.2005.02.001

      63. Singh R., Schwarz N., Taesombut N., Lee D., Jeong B., Renambot L., Lin A. W., West R., Otsuka H., Naitof S., Peltier S. T, Martone M. E., Nozaki K., Leigh J., Ellisman M. H. Real-time multi-scale brain data acquisition, assembly, and analysis using an end-to-end. OptIPuter Fut. Gener. Comp. Syst. 2006.

      64. Stefanescu R., Pennec X., Ayache N. Grid powered nonlinear image registration with locally adaptive regularization. Med. Image Anal. 2004, 8 (3), 325–342. https://doi.org/10.1016/j.media.2004.06.010

      65. Ma Y., Hof P. R., Grant S. C., Blackband S. J., Bennett R., Slatest L., McGuigan M. D., Benveniste H. A three-dimensional digital atlas database of the adult C57BL/6Jmouse brain by magnetic resonance microscopy. Neuroscience. 2005, 135 (4), 1203–1215. https://doi.org/10.1016/j.neuroscience.2005.07.014

      66. Yu-Len Huang. Computer-aided Diagnosis Using Neural Networks and Support Vector Machines for Breast Ultrasonography. J. Med. Ultrasound. 2009, 17 (1), 17–24. https://doi.org/10.1016/S0929-6441(09)60011-4

      67. Prachi Damodhar Shahare, Ram Nivas Giri. Comparative Analysis of Artificial Neural Network and Support Vector Machine Classification for Breast Cancer Detection. Int. Res. J. Engin. Technol. (IRJET). 2015, V. 2, Is. 9.

      68. Natrajan R., Sailem H., Mardakheh F. K., Garcia M. F., Tape C. G., Dowsett M., Bakal C., Yuan Y. Microenvironmental heterogeneity parallels breast cancer progression: a histology–genomic integration analysis. PLoS Med. 2016. 13 (2), e1001961. https://doi.org/10.1371/journal.pmed.1001961

      69. Klyuchko O. M. Brain images in information systems for neurosurgery and neurophysiology. Electr. Contr. Syst. 2009, 3 (21), 152–156. (In Ukrainian).

      70. Klyuchko O. M. Using of images’ databases for diagnostics of pathological changes in organism tissues. Electr. Contr. Syst. 2009, 2 (20), 62–68. (In Ukrainian).

      71. Klyuchko O. M. Elements of different level organization of the brain as material for electronic databases with images. Electr. Contr. Syst. 2009, 1 (19), 69–75. (In Ukrainian).

      72. Klyuchko O. M., Shutko V. N., Mikolushko A. M., Navrotskyi D. A. Possibility of images recognition by artificial biotechnical system. 2014 IEEE 3d Intl Conference: MSNMC Proceedings. 2014, P. 165–169.

      73. Klyuchko O. M., Managadze Yu. L., Pashkivsky A. O. Program models of 2D neuronal matrix for ecological monitoring and images’ coding. Bull. Engin. Acad. 2013, N 3–4, P. 77–82. (In Ukrainian).

      74. Klyuchko O. M., Piatchanina T. V., Mazur M. G. Combined use of relation databases of images for diagnostics, therapy and prognosis of oncology diseases. “Integrated robototechnic complexes”. Х ІІRTC-2017 Conference Proceedings. P. 275–276. (In Ukrainian).

      75. Shutko V. M., Shutko O. M., Kolganova O. O. Methods and means of compression of information. Kyiv: Nauk. dumka. 2012, 168 p. (In Ukrainian).

      76. Jecheva V., Nikolova E. Some clusteringbased methodology applications to anomaly intrusion detection systems. Int. J. Secur. Appl. 2016, 10 (1), 215–228. https://doi.org/10.14257/ijsia.2016.10.1.20

      77. Iakovidis D. K., Maroulis D. E., Karkanis S. A. Texture multichannel measurements for cancer precursors’ identification using support vector machines. Measurement. 2004, V. 36, P. 297–313. https://doi.org/10.1016/j.measurement.2004.09.010

      78. Nguyen H. Q., Carrieri-Kohlman V., Rankin S. H., Slaughter R., Stulbarg M. S. Internet-based patient education and support interventions: a review of evaluation studies and directions for future research. Comp. Biol. Med. 2004, 34 (2), 95–112. https://doi.org/10.1016/S0010-4825(03)00046-5

      79. Jézéquel P., Loussouarn L., Guérin-Charbonnel C., Campion L., Vanier A., Gouraud W., Lasla H., Guette C., Valo I., Verrièle V., Campone M. Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response. Breast Cancer Res. 2015, 17 (1), 43. https://doi.org/10.1186/s13058-015-0550-y

      80. Bozhenko V. K. Multivariable analysis of laboratory blood parameters for obtaining diagnostic information in experimental and clinical oncology. The dissertation author’s abstract on scientific degree editions. Dc. Med. Study. Moscow. 2004. (In Russian).

      81. Ko J. H., Ko E. A., Gu W., Lim I., Bang H., Zhou T. Expression profiling of ion channel genes predicts clinical outcome in breast cancer. Mol. Cancer. 2013, 12 (1), 106. https://doi.org/10.1186/1476-4598-12-106

      82. Kawai M., Nakashima A., Kamada S., Kikkawa U. Midostaurin preferentially attenuates proliferation of triple-negative breast cancer cell lines through inhibition of Aurora kinase family. J. Biomed. Sci. 2015, 22 (1), 48. https://doi.org/10.1186/s12929-015-0150-2

      83. Uhr K., Wendy J. C., Prager-van der Smissen, Anouk A. J. Heine, Bahar Ozturk, Marcel Smid, Hinrich W. H. Göhlmann, Agnes Jager, John A. Foekens, John W. M. Martens. Understanding drugs in breast cancer through drug sensitivity screening. SpringerPlus. 2015, 4 (1), 611.

      84. Onopchuk Yu. M., Biloshitsky P. V., Klyuchko O. M. Development of mathematical models based on the results of researches of Ukrainian scientists at Elbrus. Visnyk Nat. Acad. Sci. Ukr. 2008, N 3, P. 146–155. (In Ukrainian).

      85. Ankur Poudel, Dhruba Bahadur Thapa, Manoj Sapkota. Cluster Analysis of Wheat (Triticum aestivum L.) Genotypes Based Upon Response to Terminal Heat Stress. Int. J. Appl. Sci. Biotechnol. 2017, 5 (2), 188–193. https://doi.org/10.3126/ijasbt.v5i2.17614

      86. Zaslavsky L., Ciufo S., Fedorov B., Tatusova T. Clustering analysis of proteins from microbial genomes at multiple levels of resolution. BMC Bioinform. 2016, 17 (8), 276. Published online 2016 Aug 31. https://doi.org/10.1186/s12859-016-1112-8

      87. Zhou J., Richardson A. J., Rudd K. E. EcoGene-RefSeq: EcoGene tools applied to the RefSeq prokaryotic genomes. Bioinformatics. 2013, 29 (15), 1917–1918. Published: 04 June 2013. https://doi.org/10.1093/bioinformatics/btt302

      88. Zhang J., Wu G., Hu X., Li S., Hao S. A Parallel Clustering Algorithm with MPI – MKmeans. J. Comput. 2013, 8 (1), 10–17. https://doi.org/10.1109/PAAP. 2011.17

      89. Tatusova T., Zaslavsky L., Fedorov B., Haddad D., Vatsan A., Ako-adjei D., Blinkova O., Ghazal H. Protein Clusters. The NCBI Handbook [Internet]. 2nd edition. Available at https://www.ncbi.nlm.nih.gov/books/NBK242632

      90. Anderson J. G. Evaluation in health informatics: computer simulation. Comp. Biol. Med. 2002, 32 (3), 151–164. https://doi.org/10.1016/S0010-4825(02)00012-4

      91. Aruna P., Puviarasan N., Palaniappan B. An investigation of neuro-fuzzy systems in psychosomatic disorders. Exp. Syst. Appl. 2005, 28 (4), 673–679. https://doi.org/10.1016/j.eswa.2004.12.024

      92. Bange M. P., Deutscher S. A., Larsen D., Linsley D., Whiteside S. A handheld decision support system to facilitate improved insect pest management in Australian cotton systems. Comp. Electron. Agricult. 2004, 43 (2), 131–147. https://doi.org/10.1016/j.compag.2003.12.003

      93. Beaulieu A. From brainbank to database: the informational turn in the study of the brain. Stud. Hist. Phil. Biol. Biomed. Sci. 2004, V. 35, P. 367–390. https://doi.org/10.1016/j.shpsc.2004.03.011

      94. Bedathur S. J., Haritsa J. R., Sen U. S. The building of BODHI, a bio-diversity database system. Inform. Syst. 2003, 28 (4), 347–367. https://doi.org/10.1016/S0306-4379(02)00073-X

      95. Brake I. Unifying revisionary taxonomy: insect exemplar groups. Abstr. XV SEL Congr. Berlin (Germany). 2007.

      96. Braxton S. M., Onstad D. W., Dockter D. E., Giordano R., Larsson R., Humber R. A. Description and analysis of two internetbased databases of insect pathogens: EDWIP and VIDIL. J. Invertebr. Pathol. 2003, 83 (3), 185–195. https://doi.org/10.1016/S0022-2011(03)00089-2

      97. Breaux A., Cochrane S., Evens J., Martindaled M., Pavlike B., Suera L., Benner D. Wetland ecological and compliance assessments in the San Francisco Bay Region, California, USA. J. Environm. Manag. 2005, 74 (3), 217–237. https://doi.org/10.1016/j.jenvman.2004.08.017

      98. Budura A., hilippeCudré-Mauroux P., Aberer K. From bioinformatic web portals to semantically integrated Data Grid networks. Fut. Gener. Comp. Syst. 2007, 23 (3), 281–522. https://doi.org/10.1016/j.jenvman.2004.08.017

      99. Burns G., Stephan K. E., Ludäscher B., Gupta A., Kötter R. Towards a federated neuroscientific knowledge management system using brain atlases. Neurocomputing. 2001, V. 3840, P. 1633–1641. https://doi.org/10.1016/S0925-2312(01)00520-3

      100. Butenko S., Wilhelm W. E. Clique-detection models in computational biochemistry and genomics. Eur. J. Oper. Res. 2006, 173 (1), 117. https://doi.org/10.1016/j.ejor.2005.05.026

      101. Carro S. A., Scharcanski J. Framework for medical visual information exchange on the WEB. Comp. Biol. Med. 2006, 36 (4), 327–338. https://doi.org/10.1016/j.compbiomed.2004.10.004

      102. Chau M., Huang Z., Qin J., Zhou Y., Chen H. Building a scientific knowledge web portal: The NanoPort experience. Decisi. Supp. Syst. 2006. https://doi.org/10.1016/j.dss.2006.01.004

      103. Chen M., Hofestädt R. A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. J. Biomed. Inform. 2006, 39 (2), 147–159. https://doi.org/10.1016/j.jbi.2005.05.005

      104. Chli M., De Wilde P. Internet search: Subdivision-based interactive query expansion and the soft semantic web Applied Soft Computing. 2006. https://doi.org/10.1016/j.asoc.2005.11.003

      105. Despont-Gros C., Mueller H., Lovis C. Evaluating user interactions with clinical information systems: A model based on human–computer interaction models. J. Biomed. Inform. 2005, 38 (3), 244–255. https://doi.org/10.1016/ j.jbi.2004.12.004

      106. Despont-Gros C., Mueller H., Lovis C. Evaluating user interactions with clinical information systems: a model based on human-computer interaction models. J. Biomed. Inform. 2005, 38 (3), 244–255. https://doi.org/10.1016/j.jbi.2004.12.004

      107. Marios D., Dikaiakos M. D. Intermediary infrastructures for the World Wide Web. Comp. Networks. 2004, V. 45, P. 421–447. https://doi.org/10.1016/j.comnet.2004.02.008

      108. Dimitrov S. D., Mekenyan O. G., Sinks G. D., Schultz T. W. Global modeling of narcotic chemicals: ciliate and fish toxicity. J. Mol. Struct.: Theochem. 2003, 622 (12), 63–70. https://doi.org/10.1016/S0166-1280(02)00618-8

      109. Dong Y., Zhuang Y., Chen K., Tai X. A hierarchical clustering algorithm based on fuzzy graph connectedness. Fuzzy Sets. Syst. 2006, V. 157, P. 1760–1774. https://doi.org/10.1016/j.fss.2006.01.001

      110. Duan Y., Edwards J. S., Xu M. X. Web-based expert systems: benefits and challenges. Inf. Manag. 2005, 42 (6), 799–811https://doi.org/10.1016/j.im.2004.08.005

      111. Essen van D. C. Windows on the brain: the emerging role of atlases and databases in neuroscience. Curr. Opin. Neurobiol. 2002, 12 (5), 574–579. https://doi.org/10.1016/S0959-4388(02)00361-6

      112. Fellbaum C., Hahn U., Smith B. Towards new information resources for public health From Word Net to Medical Word Net. J. Biomed. Inform. 2006, 39 (3), 321–332. https://doi.org/10.1016/j.jbi.2005.09.004

      113. Ferraris M., Frixione P., Squarcia S. Network oriented radiological and medical archive. Comp. Physics Commun. 2001, V. 140, P. 226–232. https://doi.org/10.1016/S0010-4655(01)00273-9

      114. Flower D. R., Attwood T. K. Integrative bioinformatics for functional genome annotation: trawling for G protein-coupled receptors. Semin. Cell. Dev. Biol. 2004, 15 (6), 693–701. https://doi.org/10.1016/j.semcdb.2004.09.008

      115. Fink E., Kokku P. K., Nikiforou S., Hall L. O., Goldgof D. B., Krischer J. P. Selection of patients for clinical trials: an interactive web-based system. Art. Intell. Med. 2004, 31 (3), 241–254. https://doi.org/10.1016/j.artmed.2004.01.017

      116. Fitzpatrick M. J., Ben-Shahar Y., Smid H. M., Vet L. E., Robinson G. E., Sokolowski M. B. Candidate genes for behavioural ecology. Trend Ecol. Evol. 2005, 20 (2), 96–104. https://doi.org/10.1016/j.tree.2004.11.017

      117. Fox J., Alabassi A., Patkar V., Rose T., Black E. An ontological approach to modelling tasks and goals. Comp. Biol. Med. 2006, V. 36, P. 837–856. https://doi.org/10.1016/j.compbiomed.2005.04.011

      118. Fu Zetian, Xu Feng, Zhou Yun, Shuan X. Z. Pig-vet: a web-based expert system for pig disease diagnosis. 2006. https://doi.org/10.1016/j.eswa.2005.01.011

      119. Gaulton A., Attwood T. K. Bioinformatics approaches for the classification of G-protein-coupled receptors. Curr. Opin. Pharmacol. 2003, 3 (2), 114–120. https://doi.org/10.1016/S1471-4892(03)00005-5

      120. Gevrey M., Worner S., Kasabov N., Pitt J., Giraudel J. L. Estimating risk of events using SOM models: A case study on invasive species establishment. Ecol. Modell. 2006, 197 (34), 361–372. https://doi.org/10.1016/j.ecolmodel. 2006.03.032

      121. Glenisson P., Glänzel W., Janssens F., Moor B. D. Combining full text and bibliometric information in mapping scientific disciplines. Inf. Proc. Manag. 2005, 41 (6), 1548–1572. https://doi.org/10.1016/j.ipm.2005.03.021

      122. Goldys E. M. Fluorescence Applications in Biotechnology and the Life Sciences. USA: John Wiley & Sons. 2009, 367 p.

      123. Graham C. H., Ferrier S., Huettman F., Moritz C., Peterson A. T. New developments in museum-based informatics and applications in biodiversity analysis. Trend. Ecol. Evol. 2004, 19 (9), 497–503. https://doi.org/10.1016/ j.tree.2004.07.006

      124. Gruber T. R. A translation approach to portable ontologies. Knowl. Acquisition. 1993, 5 (2), 199–220. https://doi.org/10.1006/knac.1993.1008

      125. Hirano S., Sun X., Tsumoto S. Comparison of clustering methods for clinical databases. Inform. Sci. 2004, 159 (34), 155–165. https://doi.org/10.1016/j.ins.2003.03.011

      126. Hong Yu., Hatzivassiloglou V., Rzhetsky A., Wilbur W. J. Automatically identifying gene/protein terms in MEDLINE abstracts. J. Biomed. Inform. 2002, 35 (56), 322–330. https://doi.org/10.1016/S1532-0464(03)00032-7

      127. Horn W. AI in medicine on its way from knowledge-intensive to data-intensive systems. Artificial Intelligence in Medicine. Elsevier. 2001, 23 (1), 512. https://doi.org/10.1016/S0933-3657(01)00072-0

      128. Hsi-Chieh Lee, Szu-Wei Huang, Li E. Y. Mining protein–protein interaction information on the internet. Exp. Syst. Appl. Elsevier. 2006, 30 (1), 142–148. https://doi.org/10.1016/j.eswa.2005.09.083

      129. Jabs R., Pivneva T., Huttmann K., Wyczynski A., Nolte C., Kettenmann H., Steinhäuser C. Synaptic transmission onto hyppocampal glial cells with hGFAP promoter activity. J. Cell Sci. 2005, V. 118, P. 3791–3803. https://doi.org/10.1242/jcs.02515

      130. Johnson S. B., Friedman R. Bridging the gap between biological and clinical informatics in a graduate training program. J. Biomed. Inform. 2007, 40 (1), 59–66. Epub. 2006 Mar 15. https://doi.org/10.1016/j.jbi.2006.02.011

      131. Kaiser M., Hilgetag C. C. Modelling the development of cortical systems networks. Neuro computing. 2004, V. 5860, P. 297–302. https://doi.org/10.1016/j.neucom.2004.01.059

      132. Yan H., Jiang Y., Zheng J. The internet-based knowledge acquisition and management method to construct large-scale distributed medical expert system. Comp. Meth. Progr. Biomed. 2004, 74 (1), 1–10. https://doi.org/10.1016/S0169-2607(03)00076-2

      133. Kannathal N., Acharya U. R., Lim C. M., Sadasivan P. K. Characterization of EEG. A comparative study. Comp. Meth. Progr. Biomed. 2005, 80 (1), 17–23. https://doi.org/10.1016/j.cmpb.2005.06.005

      134. Koh W., McCormick B. H. Brain micro structure database system: an exoskeleton to 3D reconstruction and modelling. Neurocomputing. 2002, V. 4446, P. 1099–1105. https://doi.org/10.1016/S0925-2312(02)00426-5

      135. Koh W., McCormick B. H. Registration of a 3D mouse brain atlas with brain microstructure data. Neurocomputing. 2003, V. 5254, P. 307–312. https://doi.org/10.1016/S0925-2312(02)00793-2

      136. Kulish V., Sourin A., Sourina O. Human electro encephalograms seen as fractal time series: Mathematical analysis and visualization. Comp. Biol. Med. 2006, 36 (3), 291–302. https://doi.org/10.1016/j.compbiomed.2004.12.003

      137. Lubitz von D., Wickramasinghe N. Networkcentric healthcare and bioinformatics: Unified operations within three domains of knowledge. Exp. Syst. Appl. 2006, 30 (1), 11–23. https://doi.org/10.1016/j.eswa.2005.09.069

      138. Martin-Sanchez F., Iakovidis I., Norager S., Maojo V., de Groen P., Van der Lei J., Jones T., Abraham-Fuchs K., Apweiler R., Babic A., Baud R., Breton V., Cinquin P., Doupi P., Dugas M., Eils R., Engelbrecht R., Ghazal P., Jehenson P., Kulikowski C., Lampe K., De Moor G., Orphanoudakis S., Rossing N., Sarachan B., Sousa A., Spekowius G., Thireos G., Zahlmann G., Zvárová J., Hermosilla I., Vicente F. J. Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care. J. Biomed. Inform. 2004, 37 (1), 30–42. https://doi.org/10.1016/j.jbi.2003.09.003

      139. Masseroli M., Visconti A., Bano S. G., Pinciroli F. He@lthCo-op: a web-based system to support distributed healthcare co-operative work. Comp. Biol. Med. 2006, 36 (2), 109–127. ttps://doi.org/10.1016/j.compbiomed.2004.09.005

      140. Moon S., Byun Y., Han K. FSDB: A frameshift signal database. – Comp. Biol. Chem. 2007, 31 (4), 298–302https://doi.org/10.1016/j.compbiolchem.2007.05.004

      141. Orgun B., Vu J. HL7 ontology and mobile agents for interoperability in heterogeneous medical information systems. Comp. Biol. Med. 2006, 36 (78), 817–836. https://doi.org/10.1016/j.compbiomed.2005.04.010

      142. Pérez-Rey D., Maojo V., García-Remesal M., Alonso-Calvo R., Billhardt H., Martin-Sánchez F., Sousa A. Ontofusion: Ontologybased integration of genomic and clinical databases. Comp. Biol. Med. 2006, 36 (78), 712–730. https://doi.org/10.1016/j.compbiomed.2005.02.004

      143. Krishtal O. A., Kiskin N. I., Tsyndrenko A. Ya., Klyuchko E. M. Pharmacological properties of amino acid receptors in isolated hippocampal neurons. Receptors and ion channels. Ed. by Ovchinnikov Y. A., Hucho F. Berlin-New York: Walter de Gruyter. 1987, P. 127–137.

      144. Klyuchko E. M, Klyuchko Z. F., Beloshitsky P. V. Some adaptation characteristics of insects in mountains of Prielbrussie. Nalchik (Russia), “Hypoxia: automatic analysis of hypoxic states of healthy people and sick ones. 2005, V. 1, P. 137–140. (In Russian).

      145. Klyuchko O. M., Development of ecological databases of part of algorithm of ecological monitoring. Electr. Contrl. Syst. 2008, 2 (16), 42–50. (In Ukrainian).

      146. Klyuchko O. M., Development of electronic information systems for monitoring of insect fauna. Electr. Contrl. Syst. 2008, 3 (17), 57–63. (In Ukrainian).

      147. Gonchar O., Klyuchko E., Mankovskaya I. Role of complex nucleosides in the reversal of oxidative stress and metabolic disorders induced by acute nitrite poisoning. Indian J. Pharmacol. 2006, 38 (6), 414–418. https://doi.org/10.4103/0253-7613.28208

      148. Gonchar O., Klyuchko E., Seredenko M., Oliynik S. Corrections of prooxidant — antioxidant homeostasis of organism under hypoxia of different genesis by yackton, new pharmacological preparation. Sofia (Bulgaria), Acta Physiol. Pharmacol. Bulg. 2003, V. 27, P. 53–58.

      149. Klyuchko O., Klyuchko Z., Lizunova A. Electronic Noctuidae database: some problems and solutions. Proceed. 16th European Congress of Lepidopterology. Cluj (Romania). 2009, P. 31–32.

      150. Klyuchko O., Klyuchko Z., Lizunova A. Noctuidae fauna of Ukrainian Karpathy: results of monitoring (1956–2008). Proceed. 16th European Congress of Lepidopterology. Cluj (Romania). 2009, P. 31.

      151. Klyuchko O. M., Klyuchko Z. F., Lizunova A. G. Development Of Database For Noctuidae Species In Ukraine. 5-th International Conference On the Biology Of Butterflies, Roma. 2007.

      152. Klyuchko Z. F., Klyuchko O. M. Diversity аnd biogeography Of Noctuidae Species In Ukraine. 5-th International Conference On the Biology Of Butterflies, Roma. 2007.

      153. Klyuchko O. M., Beloshitsky P. V. Investigation of insect adaptation characteristics in Prielbrussie in 2004–2005. Mater. VIII World Congress of International Society for Adaptive Medicine (ISAM). Moscow (Russia). 2006, Р. 165–166.

      154. Beloshitsky P. V., Klyuchko O. M. Contribution of Sirotinin’s school into adaptation medicine. Mater. VIII World Congress of International Society for Adaptive Medicine (ISAM). Moscow (Russia). 2006, Р. 158.

      155. Klyuchko O. M., Klyuchko Z. F. Ukrainian Noctuidae Database. Mater. Of XIV SEL Congress. Roma (Italy). 2005, P. 49.

      156. Klyuchko Z. F., Klyuchko O. M. Noctuidae (Lepidoptera) of Donbass, Ukraine. Mater. of XIV SEL Congress. Roma (Italy). 2005, P. 41–2.

      157. Beloshitsky P., Klyuchko O., Onopchuck Yu., Onopchuck G. Mathematic model for hypoxic states development for healthy people and ones with ischemic heart disease. High altitude medicine and biology: Mater. ISMM Congress. Beijing (China). 2004, V. 5, P. 251.

      158. Beloshitsky P., Klyuchko O., Kostyuk O., Beloshitsky S. Peculiarities of high mountain factors influence on organism. High altitude medicine and biology: Mater. ISMM Congress. Beijing (China). 2004, V. 5, P. 250.

      159. Gonchar O., Klyuchko O., Beloshitsky P. Ways of myocardial metabolic dis orders correction at hypoxia by new pharma cological preparations. High altitude medicine and biology: Mater. ISMM Congress. Beijing (China). 2004, V. 5, P. 249.

      160. Gonchar O., Klyuchko O., Seredenko M., Oliynyk B. Correction of metabolic disorders at hypoxia by new pharmacological preparations. Mater. 3 FEPS Congress. Nice (France). 2003, P. 228.

      161. Troyan V., Klyuchko O., Taran N. About some ways to change gender standards. Standard: abweichung: Mater. Intl. Kongress in Natur wissenschaft und Technik. Berlin (Germany). 2003, P. 208.

      162. Seredenko M., Gonchar O., Klyuchko O., Oliynyk S. Peculiarities of prooxidant — antioxidant balance of organism under hypoxia of different genesis and its corrections by new pharmacological preparations. Acta Physiologica Hungarica. Budapest (Hungary). 2002, 89 (1–3), 292.

      163. Klyuchko O. M., Kiskin N. I., Krishtal O. A., Tsyndrenko A. Ya. Araneidae toxins as antagonists of excitatory amino acid responses in isolated hippocampal neurons. X School on biophysics of membrane transport. Szczyrk (Poland). 1990, V. 2, P. 271.

      164. Akaike N., Kawai N., Kiskin N. I., Krishtal O. A., Tsyndrenko A. Ya., Klyuchko O. M. Spider toxin blocks excitatory amino acid responses in isolated hippocampal pyramidal neurons. Neurosci. Lett. 1987, V. 79, P. 326–330. https://doi.org/10.1016/0304-3940(87)90453-8

      165. Aralova N. I., Klyuchko O. M. Mathematic modeling of functional self-organization of pilots’ respiratory systems. “Integrated intellectual robototechnical complexes” — “IIRTC-2018”. Mat. ХІ Intl. Scient. Tech. Conference. 2018, P. 268–269. (In Ukrainian).

      166. Klyuchko Z. F., Klyuchko O. M. Moths (Lepidoptera: Noctuidae s. l.) of Cherkasska Region of Ukraine according to results of long-term monitoring. Eversmannia. 2014, V. 37, P. 32–49. (In Russian).

      167. Klyuchko Z. F., Klyuchko O. M. Analysis of moth fauna taxonomic structure (Lepidoptera: Noctuidae s. l.) of Ukraine according to monitoring data. Eversmannia. 2014, 33 (3), 41–45. (In Russian).

      168. Klyuchko Z. F. Noctuidae of Ukraine. Kyiv: Raevsky Publishing. 2006. (In Ukrainian).

      169. Klyuchko Z. F., Klyuchko O. M. Monitoring of the diversity of Noctuidae (Lepidoptera) fauna in Ukrainian Polissia. “Nature of Polissia: investigation and protection”: Mat. Intl. Sci. Conf. 2014, P. 498–502. (In Ukrainian).

      170. Klyuchko Z. F., Klyuchko O. M., Lizunova A. G. Monitoring of Noctuidae fauna of Ukraine using electronic information systems. “Nature of Polissia: investigation and protection”: Mat. Intl. Sci. Conf. 2014, P. 261–265. (In Ukrainian).

      171. Klyuchko O. M., Pyatchanina T. V., Mazur M. G. Methods of mathematics and bioinformatics in contemporary oncology. Mat. World Congr. “Aviation in the XXI c.”, 10–12 Oct 2018, Kyiv. P. 6.2.10–6.2.14. http://conference.nau.edu.ua/index.php/Congress/Congress2018/paper/viewFile/5014/4327

      172. Klyuchko E. М., Tzyndrenko A. Ya. The method for dissociation of hippocampal cells. Patent 1370136 USSR, МКИ С12N 5/00. Priority: 31.01.1986; Issued: 30.01.1988, Bull. N 4. – 3 p. http://www.findpatent.ru/patent/137/1370136.html

      http://ww.findpatent.ru/img_show/6580725.html

      173. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. O. Method of bio-sensor test system application. Patent UA 129923 U, G01N33/50. Priority: 22. 03. 2018, u201802896, Issued: 26. 11. 2018, Bull. 22. (In Ukrainian).

      174. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. O. Method of application of biotechnical monitoring system with biosensor (biosensor test system). Patent UA; G01N33/00, C12Q 1/02. Priority: 22. 03. 2018 u201802893. (In Ukrainian).

      175. Klyuchko O. M., Biletsky A. Ya., Navrots kyi D. O. Method of application of biotechnical monitoring system with biosensor and subsystem for optical registration. Patent UA 129922 U, G01N33/50. Priority: 22.03.2018, u201802894, Issued: 26.11.2018, Bull. 22. (In Ukrainian).

      176. Klyuchko O. M. Method of application of biotechnical monitoring system for bioindicators’ accounting with biosensor and sub-system for optical registration. Patent UA 129987 U, G01N33/00, C12Q 1/02, C12N 15/00. Priority: 27. 04. 2018,

      u201804662, Issued: 26. 11. 2018, Bull. 22. (In Ukrainian).

      177. Klyuchko O. M. Method for cells’ dissociation. Patent UA 130672 U, G01N33/00, C12Q 1/02, C12N 15/00. Priority: 27.04.18, u201804668, Issued 26.12.2018, Bull. 24. (In Ukrainian).

      178. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. Method of application of biotechnical monitoring system with expert subsystem and biosensor. Patent UA 131016 U, G01N33/50, C12Q 1/02, C12N 15/00. Priority: 27. 04. 18, u201804663. (In Ukrainian).

      179. Klyuchko O. M. Method of qualitative analysis of chemical substances. Patent UA 131016 U, G01N33/50, G01N21/78, C12Q 1/60. Priority: 11.05.2018, u201805174, Issued 10.01.2019, Bull. 1. (In Ukrainian).

      180. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. A. Method of quantitative analysis of chemical substances. Patent UA; G01N33/50, G01N21/78, C12Q 1/60. Priority: May 2018, u201805175. (In Ukrainian).

      181. Klyuchko O. M., Biletsky A. Ya. Method of qualitative analysis of chemical substances for the influence on electrical currents in bioobjects. Patent UA; G01N 33/50, G01N 21/78, C12Q 1/60. Priority: May 2018, u201806345. (In Ukrainian).

      182. Klyuchko O. M., Biletsky A. Ya. Method of qualitative analysis of hydrocarbons with a high and toxic effect on bioobjects. Patent UA; G01N 33/50, G01N 21/78, C12Q 1/60. Priority: May 2018, u201806342. (In Ukrainian).

      183. Schnase J. L., Cushing J., Frame M. Information technology challenges of biodiversity and ecosystems informatics. Inform. Syst. 2003, 28 (4), 339–345. https://doi.org/10.1016/S0306-4379(02)00070-4

      184. Hardy P. B., Sparks T. H., Isaak N. J. Specialism for larval and adult consumer resources among Brittish butterflies: implications for conservation. Biol. Conserv. 2007, 138 (3–4), 440–452. https://doi.org/10.1016/j.biocon.2007.05.014

      185. Dennis R. L. H., Shreeve T. G., Sparks T. H. A comparison of geographical and neighbourhood models for improving atlas databases. The case of the French butterfly atlas. Biol. Conserv. 2002, 108 (2), 143–159. https://doi.org/10.1016/S0006-3207(02)00101-5

      186. Ravlin F. W. Development of monitoring and decision-support systems for integrated pest management of forest defoliators in North America. Forest Ecol. Manag. 1991, V. 39, P. 3–13. https://doi.org/10.1016/0378-1127(91)90156-P

      187. Mahaman B. D., Harizanis P., Filis I., Antonopouloua E., Yialouris C. P., aSideridis A.V. aA diagnos tic e xpert system for honeybee pests. Comp. Electron. Agricult. 2002, 36 (1), 1731. https://doi.org/10.1016/S0168-1699(02)00069-8

      188. Murali N. S., Percy-Smith A. Databasemanagement system for monitoring and warning of codling moth (Cydia pomonella) and carrot fly (Psila rosae). Comp. Electron. Agricult. 1991, 6 (3), 267272. https://doi.org/10.1016/0168-1699(91)90007-V

      189. Drake V. A., Wang H. K., Harman I. T. Insect – monitoring radar: remote and network operation. Comp. Electron. Agricult. 2002, 35 (23), 7794. https://doi.org/10.1016/S0168-1699(02)00024-8

      190. Nikolov N., Visone R., Nesteruk I., Rasponi M., Redaelly A. A new algorithm to analyze the video data of cell contractions in microfluidic platforms. Innov Biosyst Bioeng. 2018, 2(2), 74–83. https://doi.org/10.20535/ibb.2018.2.2.128477

      191. Umanets V. S., Voinyk B. A., Pavlov V. A., Nastenko I. A. Estimation of algorithms efficiency in the task of biological objects clustering. Innov Biosyst Bioeng. 2018, 2 (2), 84–89. https://doi.org/10.20535/ibb.2018.2.2.133466