Select your language

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

 3 2014

"Biotechnologia Acta" v. 7, no 3, 2014
https://doi.org/10.15407/biotech7.03.052
Р. 52-59, Bibliography 25, Russian
Universal Decimal classification: 577.112:544.034.4:617–089.844

POLYPEPTIDE EXTRACTION FROM ALGINATE HYDROGELS in vitro AND in vivo

T. V. Shkand 1, A. D. Roshal 2, 3, N. A. Chizh 1, A. S. Varenikov 2, V. O. Cheranovsky 2, B. P. Sandomirsky 1

1 Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
2 Chemistry Research Institute of Kharkov Karazin National University
3 State Scientific Organization "Scientific and Technological Complex Institute for Single Crystals of the National Academy of Sciences of Ukraine ", Kharkiv, Ukraine

Dependence of rheological and diffusion properties of gels on their composition as well as desorption of active components from the resulted implants in biological objects have been studied.

The work has been performed in vitro using step-wise extraction of polypeptides form the heart of newborn piglets and also in vivo by implanting the «gel-extract» complex into muscular tissue of rats. The dynamics of peptide transfer was assessed using photometric and fluorometric methods.

It has been established that with the growth of alginate concentration in gel there is a transition from convective mechanism of mass transfer to molecular diffusion. The study of the dynamics of mass transfer of fluorescent protein (R-phycoerythrin) has shown that peptides release from a gel into surrounding tissues for 5 hrs with the rate of 8?9% per hours with following decrease in the extraction rate due to cross diffusion, which contributes to prolonged effect of peptides to a target organ.

Thus the data presented about mass transfer in alginate gels should be taken into account when designing the compositions of «peptide-extract gels» during transplantation into biological objects.

Key words: polypeptides, extraction, alginate, gel, implant.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014

References

1.  Martinez-Selles M., Lopez-Palop R., Perez-David E., Bueno H. Influence of age on gender differences in the management of acute inferior or posterior myocardial infarction. Chest. 2005, 128(2), 792–797.
 https://doi.org/10.1378/chest.128.2.792

2.  Jessup M., Brozena S. Medical progress: heart failure. N. Engl. J. Med. 2003, 348, 2007–2018. https://doi.org/0.1056/NEJMra021498.

3.  Rankin J. M., Spinelli J. J., Carere R. G., Ric­ci D. R., Penn I. M., Hilton J. D., Henderson M. A.,  Hayden R. I., Buller C. E. Improved clinical outcome after widespread use of coronary-artery stenting in Canada. N. Engl. J. Med. 1999, V. 341, P. 1957–1965.
https://doi.org/10.1056/NEJM199912233412602

4.  Kovacic J. C., Muller D. W., Harvey R.,  Graham R. M. Update on the use of stem cells for cardiac disease. Intern. Med. J. 2005, 35(6), 348–356.
 https://doi.org/10.1111/j.1445-5994.2005.00840.x.

5.  Lovell M. J., Mathur A. The role of stem cells for treatment of cardiovascular disease. Cell Prolif. 2004, 37(1), 67–87.
  https://doi.org/0.1111/j.1365-2184.2004.00301.x

6.  Davis M. E., Motion J. P., Narmoneva D. A.,  Takahashi T., Hakuno D., Kamm R. D., Zhang S., Lee R. T. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation. 2005, 111(4), 442–450.
 https://doi.org/10.1161/01.CIR.0000153847.47301.80.

7.  Christman K. L., Lee R. J. Biomaterials for the treatment of myocardial infarction. J. Am. Coll. Cardiol. 2006, 48(5), 907–913.
 https://doi.org/10.1016/j.jacc.2006.06.005

8.  Wall S. T., Walker J. C., Healy K. E., Ratclif­fe M. B., Guccione J. M. Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation. 2006, 114, 2627–2635.
 https://doi.org/10.1161/CIRCULATIONAHA.106.657270

9.  Popov V. О., Gal’brajh L. S., Vihoreva G. A., Kil’deeva N. R., Judanova T. N., Bonarceva G. A.,  Mahina T. K. Biologiocally active polymerase composition. RF. Patent 2 318 535. March 10, 2008.

10.  Juhua L., Bendzhamin C. Pharmaceutical compositions for delivery of peptides with sustained release. US. Patent 2 456 018. July 20, 2012.

11.  Shelebi Sh. V., Dzhekson S. A., Moro Zh.-P. Ion molecular conjugates of biodegradable complex polyethers and bioactive polypeptides. US. Patent 2 237 681. October 10, 2004.

12.  Saikava A., Igari J., Hata J., Jamamoto K. Compositions of sustained release, method for their derivation and application. JP. Patent 2 230 550. June 20, 2004.

13.  Pelle M., Rum S. Compositions of sustained release and method for their derivation. FR. Patent 2 198 678. February 20, 2003.

14.  Murray O., Holl M., Green R., Kearney P. Fast- dispersing dosage forms containing fish gelatin. US. Patent 2 242 969. December 27, 2004.

15.  Constantini D., Lemarchand C. Mucosal bioadhesive slow release carrier for delivering active components. FR. Patent 2 420 267. December 27, 2012.

16.  Salvador G. G., Nardi R. A., Su?e N. J. M. Tico G. J. R., Mi?arro C. M. Composition of biocompatible microparticles of alginic acid for the controlled release of active ingredients by intravenous administration. US. Patent 2 476 235. February 27, 2013.

17.  Howard J. R., Timmins P. Controlled release formulation. US Pat. 4 792 452. December 20, 1988.

18.  Marie E., Landfester K., Antonietti M. Synthesis of chitosan-stabilized polymer dispersions, capsules, and chitosan grafting products via miniemulsion. Biomacromolecules. 2002, 3(3), 475–481.
 https://doi.org/10.1021/bm015634s.

19.  Bingbing J., Ling H., Changyou G., Jiacong S. Crosslinked polysaccharide nanocapsules: Preparation and drug release properties. Acta Biomaterialia. 2006, 2(1), 9–18.
https://doi.org/10.1016/j.actbio.2005.08.006

20.  Kamada M., Hirayama F., Udo K., Yano H., Arima H., Uekama K. Cyclodextrin conjugate-based controlled release system: repeated- and prolonged-releases of ketoprofen after oral administration in rats. J. of Controlled release. 2002, 82(2–3), 407–416.
  https://doi.org/10.1016/S0168-3659(02)00171-2

21.  Roshal’ A. D., Shkand T. V., Chizh N. A., Chera­novs­kij V. O., Kalinkevich A. N., Sandomirs­kij B. P. Study of dynamics of polypeptide extraction from alginate microgels. Vestnik neotlozhnoj i vosstanovitel’noj mediciny. 2012, 13(1), 109–114. (In Ukrainian).

22.  Babaeva A. G., Chizh N. A., Galchenko S. E., Sandomirskij B. P. Effect of piglet heart extract on myocardial necrosis. Teoretychna i eksperymentalna medycyna. 2013, 59(2), 28–33. (In Ukrainian).

23.  Galchenko S. Je. Extracts of cryopreserved fragments of xeno- organs: procurements and biological effect. Problemy kriobiologii. 2005, 15(3), 403–406. (In Ukrainian).

24.  Mamontov V. V, Chujko V. A., Roshal A. D. Method for determining royal jelly in pharmaceuticals and honey products. SU. Patent 1 776 351. November 15, 1992.

25. Dulnev N. G. Theory of heat- and mass exchange. St.-Petersburg: Information technologies, mechanics and optics. 2012,  193 p. (In Russian).