Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2018 № 4 NON-TRADITIONAL PRODUCERS OF MICROBIAL EXOPOLYSACCHARIDEST. P. PIROG, A. A. VORONENKO, M. O. IVAKHNIUK National University of Food Technologies, Kyiv, Ukraine
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)


"Biotechnologia Acta" V. 11, No 4, 2018
https://doi.org/10.15407/biotech11.04.005
Р. 5-27, Bibliography 126, English
Universal Decimal Classification: 579.841: 577.114

NON-TRADITIONAL PRODUCERS OF MICROBIAL EXOPOLYSACCHARIDES

T. P. PIROG, A. A. VORONENKO, M. O. IVAKHNIUK

National University of Food Technologies, Kyiv, Ukraine

Data on exopolysaccharides synthesis by psychrophilic fungi and bacteriae, halo- and thermophilic archaea and bacteriae, including those isolated from deep-sea hydrothermal vents — sources — were provided. Physiologic significance, physico-chemical properties and possible practical applications of exopolysaccharides from unusual sources were analyzed. Most of them have immunomodulating, antiviral, anticoagulant, antitumor, antioxidant activities promising for medical and pharmaceutical applications. Meanwhile, based on the literature date, the conclusion follows about the urgent necessity to develop efficient technologies for synthesis of these exopolysaccharides by nontraditional producers, which currently lags far behind common techniques.

Key words: exopolysaccharides, thermophiles, psychrophiles, halophiles, hydrothermal vents.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018

  • References
    • 1. Donot F., Fontana A., Baccou J. C., Schorr-Galindo S. Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr. Polym. 2012, 87 (2), 951–962. https://doi.org/10.1016/j.carbpol.2011.08.083

      2. Grinberg T. A., Pirog T. P., Malashenko Yu. R., Pinchuk G. Microbial synthesis of exopolysaccharides on C1–C2–compounds. Kyiv: Naukova dumka. 1992, 212 p. (In Russian).

      3. Pidgorsky V. S., Iutinska G. O., Pirog T. P. Intensification of microbial synthesis technologies. Kyiv: Naukova dumka. 2010, 327 p. (In Ukrainian).

      4. Freitas F., Alves V. D., Reis M. A. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol. 2011, 29 (8), 388–398. https://doi.org/10.1016/j.tibtech.2011.03.008

      5. Nwodo U. U., Green E., Okoh A. I. Bacterial exopolysaccharides: functionality and prospects. Int. J. Mol. Sci. 2012, 13 (11), 14002–14015. https://doi.org/10.3390/ijms131114002

      6 . Nicolaus B., Kambourova M., Oner E. T. Extre mophiles as sources of exopoly saccha rides. Environ. Technol. 2010, 31 (10), 1145–1158. https://doi.org/10.1080/09593330903552094

      7. Nicolaus B., Kambourova M., Oner E. T. Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ. Technol. 2010, 31 (10), 1145–1158. https://doi.org/10.1080/09593330903552094

      8. Nichols C. A., Guezennec J., Bowman J. P. Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar. Biotechnol. (NY). 2005, 7 (4), 253–271. https://doi.org/10.1007/s10126-004-5118-2

      9. Chi Z., Fang Y. Exopolysaccharides from marine bacteria. J. Ocean Univ. China. 2005, 4 (1), 67–74. https://doi.org/10.1007/s11802-005-0026-2

      10. Poli A., Anzelmo G., Nicolaus B. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar. Drugs. 2010, 8 (6), 1779–1802. https://doi.org/10.3390/md8061779

      11. Guezennec J. Bacterial exopolysaccharides from unusual environments and their applications. The perfect slime: microbial extracellular polymeric substances (EPS). Flemming H. C., Neu T. R., Wingender J. (Ed.). IWA publishing. 2016, 135–152.

      12. Barbara N., Gianluca A., Annarita P. Bacterial polymers produced by extremophiles: biosynthesis, characterization, and applications of exopolysaccharides. Extremophiles: sustainable resources and biotechnological implications. Singh O. V. (Ed.). John Wiley & Sons, Inc. 2012, 335–356. https://doi.org/10.1002/9781118394144.ch13

      13. Molina I. J., Ruiz-Ruiz C., Quesada E., Béjar V. Biomedical applications of exopolysaccha-rides produced by microorganisms isolated from extreme environments. Extremophiles: sustainable resources and biotechnological implications. Singh O. V. (Ed.). John Wiley & Sons, Inc. 2012, 357–366. https://doi.org/10.1002/9781118394144.ch14

      14. Quesada E., Béjar V., Ferrer M. R., Calvo C., Llamas I., Martínez-Checa F., Arias S., Ruiz-García C., Páez R., Martínez-Cánovas M. J., Moral A. Moderately halophilic, exopolysaccharide-producing bacteria. Halophilic microorganisms. Ventosa A. (Ed.). Springer, Berlin. 2004, 297–314. https://doi.org/10.1007/978-3-662-07656-9_22

      15. Kamb ourova M., Radchenkova N., Tomova I., Bojadjieva I. Thermophiles as a promising source of exopolysaccharides with interesting properties. Biotechnology of extremophiles. Grand challenges in biology and biotechnology, vol 1. Rampelotto P. (Ed.). Springer, Cham. 2016, 117–139. https://doi.org/10.1007/978-3-319-13521-2_4

      16. Kane kar P. P., Deshmukh S. V., Kanekar S. P., Dhakephalkar P. K., Ranjekar P. K. Exopolysaccharides of halophilic microorganisms: an overview. Industrial biotechnology: sustainable production and bioresource utilization. Thangadurai D., Sangeetha J. (Ed.). Apple Academic Press. 2016, 1–27.

      17. Poli A., Finore I., Romano I., Gioiello A., Lama L., Nicolaus B. Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms. 2017, 5 (2). https://doi.org/10.3390/microorganisms5020025

      18. Poli A., Di Donato P., Abbamondi G. R., Nicolaus B. Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea. 2011. https://doi.org/10.1155/2011/693253

      19. Gien tka I., Błażejak S., Stasiak-Różańska L., Chlebowska-Śmigiel A. Exopolysaccharides from yeast: insight into optimal conditions for biosynthesis, chemical composition and functional properties – review. Acta Sci. Pol. Technol. Aliment. 2015, 14 (4), 283–292. https://doi.org/10.17306/J.AFS.2015.4.29

      20. Brock T. D. Life at high temperatures. Evolutionary, ecological, and biochemical significance of organisms living in hot springs is discussed. Science. 1967, 158 (3804), 1012–1019.

      21. Charlesworth J., Burns B. P. Extremophilic adaptations and biotechnological applications in diverse environments. AIMS Microbiol. 2016, 2 (3), 251–261. https://doi.org/10.3934/microbiol.2016.3.251

      22. Kambourova M., Mandeva R., Dimova D., Poli A., Nicolaus B., Tommonaro G. Production and characterization of a microbial glucan, synthesized by Geobacillus tepidamans V264 isolated from Bulgarian hot spring. Carbohyd. Polym. 2009, 77 (2), 338–343. https://doi.org/10.1016/j.carbpol.2009.01.004

      23. Radchenkova N., Tomova A., Kambourova M. Biosynthesis of an exopolysaccharide produced by Brevibacillus thermoruber 438. J. Biotechnol. 2011, 25 (4), 77–79. https://doi.org/10.5504/BBEQ.2011.0115

      24. Radchenkova N., Vassilev S., Panchev I., Anzelmo G., Tomova I., Nicolaus B., Kuncheva M., Petrov K., Kambourova M. Production and properties of two novel exopolysaccharides synthesized by a thermophilic bacterium Aeribacillus pallidus 418. Appl. Biochem. Biotechnol. 2013, 171 (1), 31–41. https://doi.org/10.1007/s12010-013-0348-2

      25. Yasar Yildiz S., Anzelmo G., Ozer T., Radchenkova N., Genc S., Di Donato P., Nicolaus B., Toksoy Oner E., Kambourova M. Brevibacillus themoruber: a promising microbial cell factory for exopolysaccharide production. J. Appl. Microbiol. 2014, 116 (2), 314–324. https://doi.org/10.1111/jam.12362

      26. Nicolaus B., Manca M. C., Romano I., Lama L. Production of an exopolysaccharide from two thermophilic archaea belonging to the genus Sulfolobus. FEMS Microbiol. Lett. 1993, 109 (2–3), 203–206. https://doi.org/10.1111/j.1574-6968.1993.tb06168.x

      27. Rinker K. D. , Kelly R. M. Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima. Biotechnol. Bioeng. 2000, 69 (5), 537–547. https://doi.org/10.1002/1097-0290(20000905)69:5<537::AID-BIT8>3.0.CO;2-7

      28. Rinker K. D., Kelly R. M. Growth physiology of the hyperthermophilic archaeon Thermococcus litoralis: development of a sulfurfree defined medium, characterization of an exopolysaccharide, and evidence of biofilm formation. Appl. Environ. Microbiol. 1996, 62 (12), 4478–4485.

      29. Sowers K. R., Gunsalus R. P. Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila. J. Bacteriol. 1988, 170 (2), 998–1002. https://doi.org/10.1128/jb.170.2.998-1002.1988

      30. Koerdt A., G ödeke J., Berger J., Thormann K. M., Albers S. V. Crenarchaeal biofilm formation under extreme conditions. PLos One. 2010, 5 (11). https://doi.org/10.1371/journal.pone.0014104

      31. Arena A., Mau geri T. L., Pavone B., Iannello D., Gugliandolo C., Bisignano G. Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. Int. Immunopharmacol. 2006, 6 (1), 8–13. https://doi.org/10.1016/j.intimp.2005.07.004

      32. Maugeri T. L. , Gugliandolo C., Caccamo D., Panico A., Lama L., Gambacorta A., Nicolaus B. A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnol. Lett. 2002, 24 (7), 515–519. https://doi.org/10.1023/A:1014891431233

      33. Spanò A., Gug liandolo C., Lentini V., Maugeri T. L., Anzelmo G., Poli A., Nicolaus B. A novel EPSproducing strain of Bacillus licheniformis isolated from a shallow vent off Panarea Island (Italy). Curr. Microbiol. 2013, 67 (1), 21–29. https://doi.org/10.1007/s00284-013-0327-4

      34. Arena A., Gugli andolo C., Stassi G., Pavone B., Iannello D., Bisignano G., Maugeri T. L. An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunol. Lett. 2009, 123 (2), 132–137. https://doi.org/10.1016/j.imlet.2009.03.001

      35. Manca M. C., Lama L., Improta R., Esposito E., Gambacorta A., Nicolaus B. Chemical composition of two exopolysaccharides from Bacillus thermoantarcticus. Appl. Environ. Microbiol. 1996, 62 (9), 3265–3269.

      36. Nicolaus B., Panico A., Manca M. C., Lama L., Gambacorta A., Maugeri T., Gugliandolo C., Caccamo D. A thermophilic Bacillus isolated from an Eolian shallow hydrothermal vent, able to produce exopolysaccharides. Syst. Appl. Microbiol. 2000, 23 (3), 426–432. https://doi.org/10.1016/S0723-2020(00)80074-0

      37. Zhao S., Cao F., Zhang H., Zhang L., Zhang F., Liang X. Structural characterization and biosorption of exopolysaccharides from Anoxybacillus sp. R4-33 isolated from radioactive radon hot spring. Appl. Biochem. Biotechnol. 2014, 172 (5), 2731–2746. https://doi.org/10.1007/s12010-013-0680-6

      38. Lin M. H., Yang Y. L., Chen Y. P., Hua K. F., Lu C. P., Sheu F., Lin G. H., Tsay S. S., Liang S. M., Wu S. H. A novel exopolysaccharide from the biofilm of Thermus aquaticus YT-1 induces the immune response through Toll-like receptor 2. J. Biol. Chem. 2011, 286 (20), 17736–17745. https://doi.org/10.1074/jbc.M110.200113

      39. Gugliandolo C., Spanò A., Lentini V., Arena A., Maugeri T. L. Antiviral and immunomodulatory effects of a novel bacterial exopolysaccharide of shallow marine vent origin. J. Appl. Microbiol. 2014, 116 (4), 1028–1034. https://doi.org/10.1111/jam.12422

      40. Spanò A., Laganà P., Visalli G., Maugeri T. L., Gugliandolo C. In vitro antibiofilm activity of an exopolysaccharide from the marine thermophilic Bacillus licheniformis T14. Curr. Microbiol. 2016, 72 (5), 518–528. https://doi.org/10.1007/s00284-015-0981-9

      41. Wang W., Wang S.-X., Guan H.-S. The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar. Drugs. 2012, 10 (12), 2795–2816. https://doi.org/10.3390/md10122795

      42. Guezennec J. G., Pignet P., Raguenes G. Preliminary chemical characterization of unusual eubacterial exopolysaccharides of deepsea origin. Carbohydr. Polym. 1994, 24 (4), 287–294. https://doi.org/10.1016/0144-8617(94)90073-6

      43. Raguenes G., Pignet P ., Gauthier G., Peres A., Christen R., Rougeaux H., Barbier G., Guezennec J. Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alteromonas macleodii subsp. fijiensis, and preliminary characterization of the polymer. Appl. Environ. Microbiol. 1996, 62 (1), 67–73

      44. Raguénès G. H., Peres A., Ruimy R., Pignet P., Christen R., Loaec M., Rougeaux H., Barbier G., Guezennec J. G. Alteromonas infernus sp. nov., a new polysaccharide-producing bacterium isolated from a deep-sea hydrothermal vent. J. Appl. Microbiol. 1997, 82 (4), 422–430. https://doi.org/10.1046/j.1365-2672.1997.00125.x

      45. Cambon-Bonavita M. A., Raguénès G., Jean J., Vincent P., Guezennec J. A novel polymer produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid. J. Appl. Microbiol. 2002, 93 (2), 310–315. https://doi.org/10.1046/j.1365-2672.2002.01689.x

      46. Dubreucq G., Domon B., Fo urnet B. Structure determination of a novel uronic acid residue isolated from the exopolysaccharide produced by a bacterium originating from deep sea hydrothermal vents. Carbohydr. Res. 1996, 290 (2), 175–181. https://doi.org/10.1016/0008-6215(96)00155-3

      47. Samain E., Milas M., Bozz i L., Dubreucq G., Rinaudo M. Simultaneous production of two different gel-forming exopolysaccharides by an Alteromonas strain originating from deep sea hydrothermal vents. Carbohydr. Polym. 1997, 34 (4), 235–241. https://doi.org/10.1016/S0144-8617(97)00129-X

      48. Vincent P., Pignet P., Talmont F., Bozzi L., Fournet B., Guezennec J., Jeanthon C., Prieur D. Production and characterization of an exopolysaccharide excreted by a deep-sea hydrothermal vent bacterium isolated from the polychaete annelid Alvinella pompejana. Appl. Environ. Microbiol. 1994, 60 (11), 4134–4141.

      49. Raguénès G., Christen R., Guezennec J., Pignet P., Barbier G. Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Int. J. Syst. Bacteriol. 1997, 47 (4), 989–995. https://doi.org/10.1099/00207713-47-4-989

      50. Raguénès G., Cambon-Bonavit a M. A., Lohier J. F., Boisset C., Guezennec J. A novel, highly viscous polysaccharide excreted by an Alteromonas isolated from a deep-sea hydrothermal vent shrimp. Curr. Microbiol. 2003, 46 (6), 448–452. https://doi.org/10.1007/s00284-002-3922-3

      51. Thibodeau A., Takeoka A. The applications and functions of new exopolysaccharide “Deepsane” from the deepest oceans. Fragr. J. 2006, 34 (3), 61–68.

      52. Martins A., Vieira H., Gaspar H. , Santos S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar. Drugs. 2014, 12 (2), 1066–1101. https://doi.org/10.3390/md12021066

      53. Helm R. F., Huang Z., Edwards D., Leeson H., Peery W., Potts M. Structural characterization of the released polysaccharide of desiccation-tolerant Nostoc commune DRH-1. J. Bacteriol. 2000, 182 (4), 974–982.

      54. Rougeaux H., Kervarec N., Pichon R., Guezennec J. Structure of the exopolysaccharide of Vibrio diabolicus isolated from a deep-sea hydrothermal vent. Carbohydr. Res. 1999, 322 (1–2), 40–45. https://doi.org/10.1016/S0008-6215(99)00214-1

      55. Zanchetta P., Lagarde N., Guezen nec J. A new bone-healing material: a hyaluronic acid-like bacterial exopolysaccharide. Calcif. Tissue Int. 2003, 72 (1), 74–79. https://doi.org/10.1007/s00223-001-2091-x

      56. Zanchetta P., Lagarde N., Guezen nec J. Systemic effects on bone healing of a new hyaluronic acid-like bacterial exopolysaccharide. Calcif. Tissue Int. 2003, 73 (3), 232–236. https://doi.org/10.1007/s00223-002-2081-7

      57. Senni K., Gueniche F., Changotade S., Septier D., Sinquin C., Ratiskol J., Lutomski D., Godeau G., Guezennec J., Colliec-Jouault S. Unusual glycosaminoglycans from a deep sea hydrothermal bacterium improve fibrillar collagen structuring and fibroblast activities in engineered connective tissues. Mar. Drugs. 2013, 11 (4), 1351–1369. https://doi.org/10.3390/md11041351

      58. Colliec Jouault S., Chevolot L., Helley D., Ratiskol J., Bros A., Sinquin C., Roger O., Fischer A. M. Characterization, chemical modifications and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernus. Biochim. Biophys. Acta. 2001, 1528 (2–3), 141–151. https://doi.org/10.1016/S0304-4165(01)00185-4

      59. Guezenneca J., Pigneta P., Lijou rb Y., Gentricb E., Ratiskolc J., Colliec-Jouaultc S. Sulfation and depolymerization of a bacterial exopolysaccharide of hydrothermal origin. Carbohydr. Polym. 1998, 37 (1), 19–24.

      60. Courtois A., Berthou C., Guézenn ec J., Boisset C., Bordron A. Exopolysaccharides isolated from hydrothermal vent bacteria can modulate the complement system. PLos One. 2014, 9 (4). https://doi.org/10.1371/journal.pone.0094965

      61. Cavicchioli R. Cold-adapted archaea. Nat. Rev. Microbiol. 2006, 4 (5), 331–343. https://doi.org/10.1038/nrmicro1390

      62. De Maayer P., Anderson D., Cary C., Cowan D. A. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 2014, 15 (5), 508–517. https://doi.org/10.1002/embr.201338170

      63. Liu S. B., Chen X. L., He H. L., Zhang X. Y., Xie B. B., Yu Y., Chen B., Zhou B. C., Zhang Y. Z. Structure and ecological roles of a novel exopolysaccharide from the arctic sea ice bacterium Pseudoalteromonas sp. strain SM20310. Appl. Environ. Microbiol. 2013, 79 (1), 224–230. https://doi.org/10.1128/AEM.01801-12

      64. Poli A., Esposito E., Orlando P., Lama L., Giordano A., de Appolonia F., Nicolaus B., Gambacorta A. Halomonas alkaliantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. Syst. Appl. Microbiol. 2007, 30 (1), 31–38. https://doi.org/10.1016/j.syapm.2006.03.003

      65. Casillo A., Parrilli E., Sannino F., Mitchell D. E., Gibson M. I., Marino G., Lanzetta R., Parrilli M., Cosconati S., Novellino E., Randazzo A., Tutino M. L., Corsaro M. M. Structure-activity relationship of the exopolysaccharide from a psychrophilic bacterium: a strategy for cryoprotection. Carbohydr. Polym. 2017, 156, 364–371. https://doi.org/10.1016/j.carbpol.2016.09.037

      66. Deming J. W., Young J. N. The role of exopolysaccharides in microbial adaptation to cold habitats. Psychrophiles: from biodiversity to biotechnology. Margesin R., Schinner F., Marx J. C., Gerday C. (Ed.). Springer, Cham. 2017, 259–284.

      67. Mukhopadhyay S. K., Chatterjee S., Gauri S. S., Das S. S., Mishra A., Patra M., Ghosh A. K., Das A. K., Singh S. M., Dey S. Isolation and characterization of extracellular polysaccharide Thelebolan produced by a newly isolated psychrophilic Antarctic fungus Thelebolus. Carbohydr. Polym. 2014, 104, 204–212. https://doi.org/10.1016/j.carbpol.2014.01.034

      68. Sathiyanarayanan G., Yi D.-H., Bhatia S. K., Kim J.-H., Seo H. M., Kim Y.-G., Park S.-H., Jeon D., Jung S., Jung J.-Y., Lee Y. K., Yang Y. H. Exopolysaccharide from psychrotrophic Arctic glacier soil bacterium Flavobacterium sp. ASB 3-3 and its potential applications. RSC Adv. 2015, 5 (103), 84492–84502. https://doi.org/10.1039/C5RA14978A

      69. Selbmann L., Onofri S., Fenice M., Federici F., Petruccioli M. Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res. Microbiol. 2002, 153 (9), 585–592. https://doi.org/10.1016/S0923-2508(02)01372-4

      70. Zucconi L., Pagano S., Fenice M., Selbmann L., Tosi S., Onofri S. Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar. Biol. 1996, 16 (1), 53–61. https://doi.org/10.1007/BF01876829

      71. Pavlova K., Koleva L., Kratchanova M., Panchev I. Production and characterization of an exopolysaccharide by yeast. World J. Microbiol. Biotechnol. 2004, 20 (4), 435–439. https://doi.org/10.1023/B:WIBI.0000033068.45655.2a

      72. Pavlova K., Panchev I., Krachanova M., Gocheva M. Production of an exopolysaccharide by Antarctic yeast. Folia Microbiol. (Praha). 2009, 54 (4), 343–348. https://doi.org/10.1007/s12223-009-0049-y

      73. Pavlova K., Rusinova-Videva S., Kuncheva M., Kratchanova M., Gocheva M., Dimitrova S. Synthesis and characterization of an exopolysaccharide by antarctic yeast strain Cryptococcus laurentii AL100. Appl. Biochem. Biotechnol. 2011, 163 (8), 1038–1052. https://doi.org/10.1007/s12010-010-9107-9

      74. Rusinova-Videva S., Pavlova K., Georgieva K. Effect of different carbon sources on biosynthesis of exopolysaccharide from antarctic strain Cryptococcus laurentii AL62. Biotechnol. Biotec. Eq. 2011, 25 (4), 80–84. https://doi.org/10.5504/BBEQ.2011.0121

      75. Kuncheva M., Pavlova K., Panchev I., Dobreva S. Emulsifying power of mannan and glucomannan produced by yeasts. Int. J. Cosmet Sci. 2007, 29 (5), 377–384. https://doi.org/10.1111/j.1468-2494.2007.00393.x

      76. Vlaev S., Rusinova-Videva S., Pavlova K., Kuncheva M., Panchev I., Dobreva S. Submerged culture process for biomass and exopolysaccharide production by Antarctic yeast: some engineering considerations. Appl. Microbiol. Biotechnol. 2013, 97 (12), 5303–5313. https://doi.org/10.1007/s00253-013-4864-3

      77. Poli A., Anzelmo G., Tommonaro G., Pavlova K., Casaburi A., Nicolaus B. Production and chemical characterization of an exopolysaccharide synthesized by psychrophilic yeast strain Sporobolomyces salmonicolor AL1 isolated from Livingston Island, Antarctica. Folia Microbiol. (Praha). 2010, 55 (6), 576–581. https://doi.org/10.1007/s12223-010-0092-8

      78. Nichols C. M., Lardière S. G., Bowman J. P., Nichols P. D., A. E. Gibson J., Guézennec J. Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb. Ecol. 2005, 49 (4), 578–589. https://doi.org/10.1007/s00248-004-0093-8

      79. Nichols C. M., Bowman J. P., Guezennec J. Olleya marilimosa gen. nov., sp. nov., an exopolysaccharide-producing marine bacterium from the family Flavobacteriaceae, isolated from the Southern Ocean. Int. J. Syst. Evol. Microbiol. 2005, 55 (Pt4), 1557–1561. https://doi.org/10.1099/ijs.0.63642-0

      80. Nichols C. M., Bowman J. P., Guezennec J. Effects of incubation temperature on growth and production of exopolysaccharides by an Antarctic sea ice bacterium grown in batch culture. Appl. Environ. Microbiol. 2005, 71 (7), 3519–3523. https://doi.org/10.1128/AEM.71.7.3519-3523.2005

      81. Kim S. J., Kim B. G., Park H. J., Yim J. H. Cryoprotective properties and preliminary characterization of exopolysaccharide (P-Arcpo 15) produced by the Arctic bacterium Pseudoalteromonas elyakovii Arcpo 15. Prep. Biochem. Biotechnol. 2016, 46 (3), 261–266. https://doi.org/10.1080/10826068.2015.1015568

      82. Carrión O., Delgado L., Mercade E. New emulsifying and cryoprotective exopolysaccharide from Antarctic Pseudomonas sp. ID1. Carbohydr. Polym. 2015, 117, 1028–1034. https://doi.org/10.1016/j.carbpol.2014.08.060

      83. Marx J. G., Carpenter S. D., Deming J. W. Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can. J. Microbiol. 2009, 55 (1), 63–72. https://doi.org/10.1139/W08-130

      84. Sun M. L., Zhao F., Shi M., Zhang X. Y., Zhou B. C., Zhang Y. Z., Chen X. L. Characterization and biotechnological potential analysis of a new exopolysaccharide from the Arctic marine bacterium Polaribacter sp. SM1127. Sci. Rep. 2015, 5. https://doi.org/10.1038/srep18435

      85. Sun M. L., Liu S. B., Qiao L. P., Chen X. L., Pang X., Shi M., Zhang X. Y., Qin Q. L., Zhou B. C., Zhang Y. Z., Xie B. B. A novel exopolysaccharide from deep-sea bacterium Zunongwangia profunda SM-A87: low-cost fermentation, moisture retention, and antioxidant activities. Appl. Microbiol. Biotechnol. 2014, 98 (17), 7437–7445. https://doi.org/10.1007/s00253-014-5839-8

      86. Sathiyanarayanan G., Bhatia S. K., Kim H. J., Kim J.-H., Jeon J.-M., Kim Y.-G., Park S.-H., Lee S. H., Lee Y. K., Yang Y.-H. Metal removal and reduction potential of an exopolysaccharide produced by Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620. RSC Adv. 2016, 6 (99), 96870–96881. https://doi.org/10.1039/C6RA17450G

      87. Zhou W., Wang J., Shen B., Hou W., Zhang Y. Biosorption of copper(II) and cadmium(II) by a novel exopolysaccharide secreted from deep-sea mesophilic bacterium. Colloids. Surf. B Biointerfaces. 2009, 72 (2), 295–302. https://doi.org/10.1016/j.colsurfb.2009.04.018

      88. Liu S. B., Qiao L. P., He H. L., Zhang Q., Chen X. L., Zhou W. Z., Zhou B. C., Zhang Y. Z. Optimization of fermentation conditions and rheological properties of exopolysaccharide produced by deep-sea bacterium Zunongwangia profunda SM-A87. PLoS One. 2011, 6 (11). https://doi.org/10.1371/journal.pone.0026825

      89. Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb. Ecol. 1981, 7 (3), 235–243. https://doi.org/10.1007/BF02010306

      90. Biswas J., Ganguly J., Paul A. K. Partial characterization of an extracellular polysaccharide produced by the moderately halophilic bacterium Halomonas xianhensis SUR308. Biofouling. 2015, 31 (9–10), 735–744. https://doi.org/10.1080/08927014.2015.1106479

      91. Biswas J., Mandal S., Paul A. K. Production, partial purification and some bio-physicochemical properties of EPS produced by Halomonas xianhensis SUR308 isolated from a saltern environment. J. Biol. Active Prod. Nat. 2015, 5 (2), 108–119. https://doi.org/10.1080/22311866.2015.1038852

      92. Bouchotroch S., Quesada E., Izquierdo I., Rodrgíuez M., Béjar V. Bacterial exopolysaccharides produced by newly discovered bacteria belonging to the genus Halomonas, isolated from hypersaline habitats in Morocco. J. Ind. Microbiol. Biotechnol. 2000, 24 (6), 374–378. https://doi.org/10.1038/sj.jim.7000002

      93. Llamas I., Mata J. A., Tallon R., Bressollier P., Urdaci M. C., Quesada E., Béjar V. Characterization of the exopolysaccharide produced by Salipiger mucosus A3Т, a halophilic species belonging to the Alphaproteobacteria, isolated on the Spanish Mediterranean seaboard. Mar. Drugs. 2010, 8 (8), 2240–2251. https://doi.org/10.3390/md8082240

      94. Nicolaus B., Lama L., Esposito E., Manca M. C., Improta R., Bellitti M. R., Duckworth A. W., Grant W. D., Gambacorta A. Haloarcula spp able to biosynthesize exo- and endopolymers. J. Ind. Microbiol. Biotechnol. 1999, 23 (6), 489–496. https://doi.org/10.1038/sj.jim.2900738

      95. Poli A., Kazak H., Gürleyendağ B., Tommonaro G., Pieretti G., Toksoy Öner E., Nicolaus B. High level synthesis of levan by a novel Halomonas species growing on defined media. Carbohydr. Polym. 2009, 78 (4), 651–657. https://doi.org/10.1016/j.carbpol.2009.05.031

      96. Antón J., Meseguer I., Rodríguez-Valera F. Production of an extracellular polysaccharide by Haloferax mediterranei. Appl. Environ. Microbiol. 1988, 54 (10), 2381–2386.

      97. Paramonov N. A., Parolis L. A., Parolis H., Boán I. F., Antón J., Rodríguez-Valera F. The structure of the exocellular polysaccharide produced by the Archaeon Haloferax gibbonsii (ATCC 33959). Carbohydr. Res. 1998, 309 (1), 89–94. https://doi.org/10.1016/S0008-6215(98)00102-5

      98 Parolis H., P arolis L. A., Boán I. F., Rodríguez-Valera F., Widmalm G., Manca M. C., Jansson P. E., Sutherland I. W. The structure of the exopolysaccharide produced by the halophilic Archaeon Haloferax mediterranei strain R4 (ATCC 33500). Carbohydr. Res. 1996, 295, 147–156. https://doi.org/10.1016/S0008-6215(96)90134-2

      99. Parolis L. A., Parolis H., Paramonov N. A., Boán I. F., Antón J., Rodríguez-Valera F. Structural studies on the acidic exopolysaccharide from Haloferax denitrificans ATCC 35960. Carbohydr. Res. 1999, 319 (1–4), 133–140. https://doi.org/10.1016/S0008-6215(99)00111-1

      100. Severina L. O., U senko I. A., Plakunov V. K. Exopolysaccharide biosynthesis by the extremly halophilic archebacterium Halobacterium volcanii. Mikrobiologiya. 1990, 59 (3), 437–442.

      101. Squillaci G., Finamore R., Diana P., Restaino O. F., Schiraldi C., Arbucci S., Ionata E., La Cara F., Morana A. Production and properties of an exopolysaccharide synthesized by the extreme halophilic archaeon Haloterrigena turkmenica. Appl. Microbiol. Biotechnol. 2016, 100 (2), 613–623. https://doi.org/10.1007/s00253-015-6991-5

      102. Amjres H., Béjar V., Quesada E., Carranza D., Abrini J., Sinquin C., Ratiskol J., Colliec-Jouault S., Llamas I. Characterization of haloglycan, an exopolysaccharide produced by Halomonas stenophila HK30. Int. J. Biol. Macromol. 2015, 72, 117–124. https://doi.org/10.1016/j.ijbiomac.2014.07.052

      103. Arias S., del Mora l A., Ferrer M. R., Tallon R., Quesada E., Béjar V. Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles. 2003, 7 (4), 319–326. https://doi.org/10.1007/s00792-003-0325-8

      104. Béjar V., Calvo C., Moliz J., Diaz-Martínez F., Quesada E. Effect of growth conditions on the rheological properties and chemical composition of Volcaniella eurihalina exopolysaccharide. Appl. Biochem. Biotechnol. 1996, 59 (1), 77–86. https://doi.org/10.1007/BF02787859

      105. Küçükaşik F., Kazak H ., Güney D., Finore I., Poli A., Yenigün O., Nicolaus B., Oner E. T. Molasses as fermentation substrate for levan production by Halomonas sp. Appl. Microbiol. Biotechnol. 2011, 89 (6), 1729–1740. https://doi.org/10.1007/s00253-010-3055-8

      106. Llamas I., Amjres H., Mata J . A., Quesada E., Béjar V. The potential biotechnological applications of the exopolysaccharide produced by the halophilic bacterium Halomonas almeriensis. Molecules. 2012, 17 (6), 7103–7120. https://doi.org/10.3390/molecules17067103

      107. Mata J. A., Béjar V., Llamas I., Arias S., Bressollier P., Tallon R., Urdaci M. C., Quesada E. Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Res. Microbiol. 2006, 157 (9), 827–835. https://doi.org/10.1016/j.resmic.2006.06.004

      108. Poli A., Schiano Moriello V., Esposito E., Lama L., Gambacorta A., Nicolaus B. Exopolysaccharide production by a new Halomonas strain CRSS isolated from saline lake Cape Russell in Antarctica growing on complex and defined media. Biotechnol. Lett. 2004, 26 (21), 1635–1638. https://doi.org/10.1007/s10529-004-3187-y

      109. Quesada E., Béjar V., Calvo C. Exopolysaccharide production by Volcaniella eurihalina. Experientia. 1993, 49 (12), 1037–1041. https://doi.org/10.1007/BF01929910

      110. Ruiz-Ruiz C., Srivastava G. K., Carranza D., Mata J. A., Llamas I., Santamaría M., Quesada E., Molina I. J. An exopolysaccharide produced by the novel halophilic bacterium Halomonas stenophila strain B100 selectively induces apoptosis in human T leukaemia cells. Appl. Microbiol. Biotechnol. 2011, 89 (2), 345–355. https://doi.org/10.1007/s00253-010-2886-7

      111. Mata J. A., Béjar V., Bressollie r P., Tallon R., Urdaci M. C., Quesada E., Llamas I. Characterization of exopolysaccharides produced by three moderately halophilic bacteria belonging to the family Alteromonadaceae. J. Appl. Microbiol. 2008, 105 (2), 521–528. https://doi.org/10.1111/j.1365-2672.2008.03789.x

      112. Arun J., Sathishkumar R., Muneesw aran T. Optimization of extracellular polysaccharide production in Halobacillus trueperi AJSK using response surface methodology. Afr. J. Biotechnol. 2014, 13 (48), 4449–4457. https://doi.org/10.5897/AJB2014.14109

      113. Poli A., Nicolaus B., Denizci A. A., Yavuzturk B., Kazan D. Halomonas smyrnensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol. 2013, 63 (Pt 1), 10–18. https://doi.org/10.1099/ijs.0.037036-0

      114. Mellado E., Moore E. R. B., Nieto J. J., Ventosa A. Phylogenetic interferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina and Deleya halophila and reclassification of V. Eurihalina as Halomonas eurihalina comb. nov. Int. J. Syst. Bacteriol. 1995, 45 (4), 712–716. https://doi.org/10.1099/00207713-45-4-712

      115. Bouchotroch S., Quesada E., del M oral A., Llamas I., Béjar V. Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol. 2001, 51 (Pt 5), 1625–1632. https://doi.org/10.1099/00207713-51-5-1625

      116. Sarilmiser H. K., Ates O., Ozdemir G., Arga K. Y., Oner E. T. Effective stimulating factors for microbial levan production by Halomonas smyrnensis AAD6T. J. Biosci. Bioeng. 2015, 119 (4), 455–463. https://doi.org/10.1016/j.jbiosc.2014.09.019

      117. Sam S., Kucukasik F., Yenigun O., Nicolaus B., Oner E. T., Yukselen M. A. Flocculating performances of exopolysaccharides produced by a halophilic bacterial strain cultivated on agro-industrial waste. Bioresour. Technol. 2011, 102 (2), 1788–1794. https://doi.org/10.1016/j.biortech.2010.09.020

      118. Sezer A. D., Kazak Sarılmışer H., R ayaman E., Çevikbaş A., Toksoy Öner E., Akbuğa J. Development and characterization of vancomycin-loaded levan-based microparticular system for drug delivery. Pharm. Dev. Technol. 2017, 22 (5), 627–634. https://doi.org/10.3109/10837450.2015.1116564

      119. Erginer M., Akcay A., Coskunkan B., Morova T., Rende D., Bucak S., Baysal N., Ozisik R., Eroglu M. S., Agirbasli M., Toksoy Oner E. Sulfated levan from Halomonas smyrnensis as a bioactive, heparin-mimetic glycan for cardiac tissue engineering applications. Carbohydr. Polym. 2016, 149, 289–296. https://doi.org/10.1016/j.carbpol.2016.04.092

      120. Ates O. Systems biology of microbial exopol ysaccharides production. Front. Bioeng. Biotechnol. 2015, 3. https://doi.org/10.3389/fbioe.2015.00200

      121. Schmid J., Sieber V., Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front. Microbiol. 2015, 6. https://doi.org/10.3389/fmicb.2015.00496

      122. Ruffing A., Chen R. R. Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microb. Cell Fact. 2006, 5. https://doi.org/10.1186/1475-2859-5-25

      123. Pirog T. P., Ivakhniuk M. O., Voronenko A. A. Exopolysaccharides synthesis on industrial waste. Biotechnol. acta. 2016, 9 (2), 7–18. https://doi.org/10.15407/biotech9.02.007

      124. Pirog T. P., Ivakhniuk N. A., Voronenko A. A. Microbial synthesis of exopolysaccharide ethapolan on various types of waste vegetable oils. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya biyalagichnych navuk [Proceedings of the National Academy of Sciences of Belarus, biological series]. 2017, 2, 87–93. (In Russian).

      125. Pirog T. P., Voronenko A. A., Ivakhniuk M. O. Intensification of microbial exopoly saccharide ethapolan biosynthesis on mixture of molasses and sunflower oil. Biotechnol. acta. 2017, 10 (4), 25–33. https://doi.org/10.15407/biotech10.04.025