Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2018 № 4 DEVELOPMENT OF RECOMBINANT POSITIVE CONTROL FOR Francisella tularensis DETECTION BY Q-PCR O. B. Zlenko, A. P. Gerilovych
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

"Biotechnologia Acta" V. 11, No 4, 2018
https://doi.org/10.15407/biotech11.04.068

Р. 68-72, Bibliography 8, English
Universal Decimal Classification: 79.841.95:577.2.08:579.252.5:619:616.98-076

DEVELOPMENT OF RECOMBINANT POSITIVE CONTROL FOR Francisella tularensis DETECTION  BY Q-PCR

O. B. Zlenko, A. P. Gerilovych

National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine” of the National Academy of Agrarian Sciences of Ukraine, Kharkiv

The aim of the work was to construct and test the recombinant positive control for F. tularensis detection by a real-time polymerase chain reaction (qPCR). The molecular TA-cloning of pTZ57_F/R plasmid ligated with tul4 gene PCR product into DH5α E. coli. The minimal detection level in qPCR was one copy number per reaction. The obtained positive control was highly sensitive, specific and safe qPCR in the laboratory tularemia diagnostics.

Key words: . ecombinant positive control, qPCR., tularemia, molecular cloning.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018

  • REferences
    • 1. Hestvik G., Warns-Petit E., Smith L. A., Fox N. J., Uhlhorn H., Artois M., Hannant D., Hutchings M. R., Mattsson R., Yon L., Gavier-Widen D. The status of tularemia in Europe in a one-health context: a review. Epidemiol. Infect. 2015, V. 143, P. 2137–2160. https://doi.org/10.1017/S0950268814002398

      2. Pearson A. In Zoonoses – Biology, Clinical, Practice and Public health control. Chapter 24. Tularemia. Oxford University Press. 1998, Р. 303–312. https://doi.org/10.1093/med/9780198570028.003.0031

      3. Oyston P., Sjostedt A., Titball R. Tularemia: bioterrorism defense renews interest in Francisella tularensis. Nat. Rev. Microbiol. 2004, 2 (12), 967–978. https://doi.org/10.1038/nrmicro1045

      4. World Organization for Animal Health. Manual of diagnostic tests and vaccines for terrestrial animals. Chapter 2.1.22. Tularemia. OIE. 2008, P. 361–366.

      5. Buzard G., Baker D., Wolcott M. J., Norwood D. A., Dauphin L. A. Multi-platform comparison of ten commercial master mixes for probe-based real-time polymerase chain reaction detection of bioterrorism threat agents for surge preparedness. Forensic Sci. Int. 2012, 223 (1–3), 292–297. https://doi.org/10.1016/j.forsciint.2012.10.003

      6. Mandel M., Higa A. Calcium-dependent bacteriophage DNA infection. J. Mol. Biol. 1970, 53 (1), 159–162. https://doi.org/10.1016/0022-2836(70)90051-3

      7. Hightower J., Kracalik I. T., Vydayko N., Goodin D., Glass G., Blackburn J. K. Historical distribution and host-vector diversity of Francisella tularensis, the causative agent of tularemia, in Ukraine. Paras. Vectors. 2014, V. 7, P. 453–458. https://doi.org/10.1186/s13071-014-0453-2

      8. Reintjes R., Dedushaj I., Gjini A., Rikke T., Cotter J. B., Lieftucht A., D’Ancona F., Dennis D. T., Kosoy M. A., Mulliqi-Osmani G., Grunow R., Kalaveshi A., Gashi L., Humolli I. Tularemia Outbreak Investigation in Kosovo: Case Control and Environmental Studies. Emerg. Infect. Dis. 2002, 8 (1), 69–73. https://doi.org/10.3201/eid0801.010131