Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2018 № 3 BIOLOGICAL PROPERTIES AND MEDICAL APPLICATION OF DIPHTHERIA TOXIN DERIVATIVES Manoilov K.Y.
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

"Biotechnologia Acta" V. 11, No 3, 2018
https://doi.org/10.15407/biotech11.03.027
Р. 27-46, Bibliography 198, English
Universal Decimal Classification: [577.112.083/616.931]:[615(331+371+375)+616-006.04]

BIOLOGICAL PROPERTIES AND MEDICAL APPLICATION OF DIPHTHERIA TOXIN DERIVATIVES

Manoilov K.Y.

Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv

The aim of the review was to analyze the literature data related to the application of a variety of diphtheria toxin derivatives. Although studies of the diphtheria toxin interaction with sensitive and resistant mammalian cells have been held for a relatively long time, there are still some unresolved issues concerning the molecular mechanisms of diphtheria toxin functioning. Native diphtheria toxin  and parts of its molecule which preserves toxicity are used as instruments in the newest biotechnological methods of specific cell subtype ablation in multicellular organisms. New recombinant derivatives of diphtheria toxin are periodically obtained in the laboratories throughout the world. Most of these analogs of diphtheria toxin  are used in biological studies as convenient tools for analysis of the functions of the natural toxin. A non-toxic analog of diphtheria toxin, protein CRM197, is used in clinical practice as a component of vaccines and as an anticancer agent. Diphtheria toxin  -based targeted toxin therapy is another perspective trend for cancer therapy. Therefore, studying of diphtheria toxin derivatives is of a great relevance for biotechnology and medicine.

Key words: cell ablation, CRM197, diphtheria toxin, immunogenicity, targeted toxin therapy, toxoid.

Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018

  • References

    • 1. Alouf J. E., Freer J. H. The Comprehensive Sourcebook of Bacterial Protein Toxins, Second Edition. 2nd ed. Academic Press, 1999.
      2. Fukagawa S., Yotsumoto F., Odawara T., Manabe S., Ishikawa T., Yasunaga S., Miyamoto S. Antitumour Effects of Intravenous Administration of BK-UM, a Novel Inhibitor of HB-EGF, in Ovarian Cancer Therapy. Anticancer Res. 2017, 37 (7), 3891–3896.https://doi.org/10.21873/anticanres.11770
      3. Miyamoto S., Yotsumoto F., Ueda T., Fukami T., Sanui A., Miyata K., Nam S. O., Fukagawa S., Katsuta T., Maehara M., Kondo H., Miyahara D., Shirota K., Yoshizato T., Kuroki M., Nishikawa H., Saku K., Tsuboi Y., Ishitsu ka K. BK-UM in patients with recurrent ovarian cancer or peritoneal cancer: a first-in-human phase-I study. BMC Cancer. 2017, 17 (1), 89. https://doi.org/10.1186/s12885-017-3071-5
      4. Nam S.O., Yotsumoto F., Miyata K., Suzaki Y., Yagi H., Odawara T., Manabe S., Ishikawa T., Kuroki M., Mekada E., Miyamoto S. Preclinical Study of BK-UM, a Novel Inhibitor of HB-EGF, for Ovarian Cancer Therapy. Anticancer Res. 2014, 34 (8), 4615–4620.
      5. Selim S. A., Mohamed F. H., Hessain A. M., Moussa I. M. Immunological characterization of diphtheria toxin recovered from Corynebacterium pseudotuberculosis. Saud. J. Biol. Sci. 2016, 23 (2), 282–287. https://doi.org/10.1016/j.sjbs.2015.11.004
      6. Greenfield L., Bjorn M. J., Horn G., Fong D., Buck G. A., Collier R. J., Kaplan D. A. Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta. Proc. Natl. Acad. Sci. U.S.A. 1983, 80 (22), 6853–6857. https://doi.org/10.1073/pnas.80.22.6853
      7. Freeman V.J. Studies on the virulence of bacteriophage infected strains of Corynebacterium diphtheriae. J. Bacteriol. 1951, 61 (6), 675–688.
      8. Freeman V. J., Morse I. U. Further observations on the change to virulence of bacteriophageinfected avirulent strains of Corynebacterium diphtheriae. J. Bacteriol. 1952, 63 (3), 407–414.
      9. Guedon E., Helmann J. D. Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators. Mol. Microbiol. 2003, 48 (2), 495–506. https://doi.org/10.1046/j.1365-2958.2003.03445.x
      10. Spiering M. M., Ringe D., Murphy J. R., Marletta M. A. Metal stoichiometry and functional studies of the diphtheria toxin repressor. Proc. Natl. Acad. Sci. U.S.A. 2003, 100 (7), 3808–3813. https://doi.org/10.1073/pnas.0737977100
      11. Smith W. P., Tai P. C., Murphy J. R., Davis B. D. Precursor in cotranslational secretion of diphtheria toxin. J. Bacteriol. 1980, 141 (1), 184–189.
      12. Schneewind O., Missiakas D. M. Protein secretion and surface display in Grampositive bacteria. Philos. Trans. R. Soc. Lond., B., Biol. Sci. 2012, 367 (1592), 1123–1139. https://doi.org/10.1098/rstb.2011.0210
      13. Collier R. J. Diphtheria toxin: mode of action and structure. Bacteriol. Rev. 1975, 39 (1), 54–85.
      14. Uchida T., Pappenheimer A. M., Greany R. Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J. Biol. Chem. 1973, 248 (11), 3838–3844.
      15. Bell C.E., Eisenberg D. Crystal structure of nucleotide-free diphtheria toxin. Biochemistry. 1997, 36 (3), 481–488. https://doi.org/10.1021/bi962214s
      16. Eisenberg D., Bell C. E., Bennett M. J., Collier R. J., Schlunegger M. P., Steere B. A., Weiss M. S. A Structure-Based Model of Diphtheria Toxin Action. In: Protein Toxin Structure. Springer, Berlin, Heidelberg. 1996, 25–47. https://doi.org/10.1007/978-3-662-22352-9_3
      17. Choe S., Bennett M. J., Fujii G., Curmi P. M., Kantardjieff K. A., Collier R. J., Eisenberg D. The crystal structure of diphtheria toxin. Nature. 1992, 357 (6375), 216–222. https://doi.org/10.1038/357216a0
      18. Simpson J. C., Smith D. C., Roberts L. M., Lord J. M. Expression of mutant dynamin protects cells against diphtheria toxin but not against ricin. Exp. Cell Res. 1998, 239 (2), 293–300. https://doi.org/10.1006/excr.1997.3921
      19. Olsnes S., Sandvig K. How protein toxins enter and kill cells. In: Immunotoxins
      (Frankel A.E. ed.). Martinus Nijhoff Publishing, Boston. 1987, 39–74.
      20. Kagan B. L., Finkelstein A., Colombini M. Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes. Proc. Natl. Acad. Sci. U.S.A. 1981, 78 (8), 4950–4954. https://doi.org/10.1073/pnas.78.8.4950
      21. Donovan J. J., Simon M. I., Draper R. K., Montal M. Diphtheria toxin forms transmembrane channels in planar lipid bilayers. Proc. Natl. Acad. Sci. U.S.A. 1981, 78 (1), 172–176. https://doi.org/10.1073/pnas.78.1.172
      22. Naglich J. G., Metherall J. E., Russell D. W., Eidels L. Expression cloning of a diphtheria toxin receptor: identity with a heparinbinding EGF-like growth factor precursor. Cell. 1992, 69 (6), 1051–1061. https://doi.org/10.1016/0092-8674(92)90623-K
      23. Abraham J. A., Damm D., Bajardi A., Miller J., Klagsbrun M., Ezekowitz R. A. Heparin-binding EGF-like growth factor: characterization of rat and mouse cDNA clones, protein domain conservation across species, and transcript expression in tissues. Biochem. Biophys. Res. Commun. 1993, 190 (1), 125–133. https://doi.org/10.1006/bbrc.1993.1020
      24. Louie G. V., Yang W., Bowman M. E., Choe S. Crystal structure of the complex of diphtheria toxin with an extracellular fragment of its receptor. Mol. Cell. 1997, 1 (1), 67–78. https://doi.org/10.1016/S1097-2765(00)80008-8
      25. Higashiyama S., Lau K., Besner G. E., Abraham J. A., Klagsbrun M. Structure of heparin-binding EGF-like growth factor. Multiple forms, primary structure, and glycosylation of the mature protein. J. Biol. Chem. 1992, 267 (9), 6205–6212.
      26. Mitamura T., Higashiyama S., Taniguchi N., Klagsbrun M., Mekada E. Diphtheria toxin binds to the epidermal growth factor (EGF)-like domain of human heparin-binding EGFlike growth factor/diphtheria toxin receptor and inhibits specifically its mitogenic activity. J. Biol. Chem. 1995, 270 (3), 1015–1019. https://doi.org/10.1074/jbc.270.3.1015
      27. Shen W. H., Choe S., Eisenberg D., Collier R. J. Participation of lysine 516 and phenylalanine 530 of diphtheria toxin in receptor recognition. J. Biol. Chem. 1994, 269 (46), 29077–29084.
      28. Nakamura K., Iwamoto R., Mekada E. Membrane-anchored heparin-binding EGFlike growth factor (HB-EGF) and diphtheria toxin receptor-associated protein (DRAP27)/CD9 form a complex with integrin alpha 3 beta 1 at cell-cell contact sites. J. Cell Biol. 1995, 129 (6), 1691–1705. https://doi.org/10.1083/jcb.129.6.1691
      29. Iwamoto R., Mekada E. Heparin-binding EGF-like growth factor: a juxtacrine growth factor. Cytokine Growth Factor Rev. 2000, 11 (4), 335–344.https://doi.org/10.1016/S1359-6101(00)00013-7
      30. Hasuwa H., Shishido Y., Yamazaki A., Kobayashi T., Yu X., Mekada E. CD9 amino acids critical for upregulation of diphtheria toxin binding. Biochem. Biophys. Res. Commun. 2001, 289 (4), 782–790. https://doi.org/10.1006/bbrc.2001.6053
      31. Iwamoto R., Higashiyama S., Mitamura T., Taniguchi N., Klagsbrun M., Mekada E. Heparin-binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which up-regulates functional receptors and diphtheria toxin sensitivity. EMBO J. 1994, 13 (10), 2322–2330.
      32. Cha J. H., Brooke J. S., Ivey K. N., Eidels L. Cell surface monkey CD9 antigen is a coreceptor that increases diphtheria toxin sensitivity and diphtheria toxin receptor affinity. J. Biol. Chem. 2000, 275 (10), 6901–6907. https://doi.org/10.1074/jbc.275.10.6901
      33. Cobbett L. The Resistance of Rats to Diphtheria Toxin. Br. Med. J. 1899, 1 (1998), 902–903.
      34. Pappenheimer A. M. Diphtheria Toxin. Ann. Rev. Biochem. 1977, 46 (1), 69–94. https://doi.org/10.1146/annurev.bi.46.070177.000441
      35. Moehring T. J., Moehring J. M. Interaction of diphtheria toxin and its active subunit, fragment A, with toxin-sensitive and toxinresistant cells. Infect. Immun. 1976, 13 (5), 1426–1432.
      36. Cha J. H., Brooke J. S., Eidels L. Toxin binding site of the diphtheria toxin receptor: loss and gain of diphtheria toxin binding of monkey and mouse heparin-binding, epidermal growth factor-like growth factor precursors by reciprocal site-directed mutagenesis. Mol. Microbiol. 1998, 29 (5), 1275–1284. https://doi.org/10.1046/j.1365-2958.1998.01015.xhttps://doi.org/10.1046/j.1365-2958.1998.01015.xC. B. Diphtheria toxin does not enter resistant cells by receptormediated endocytosis. Infect. Immun. 1983, 42 (2), 812–817.
      38. Mitamura T., Umata T., Nakano F., Shishido Y., Toyoda T., Itai A., Kimura H., Mekada E. Structure-function analysis of the diphtheria toxin receptor toxin binding site by sitedirected mutagenesis. J. Biol. Chem. 1997, 272 (43), 27084–27090. https://doi.org/10.1074/jbc.272.43.27084
      39. Naglich J. G., Metherall J. E., Russell D. W., Eidels L. Expression cloning of a diphtheria toxin receptor: identity with a heparinbinding EGF-like growth factor precursor. Cell. 1992, 69 (6), 1051–1061. https://doi.org/10.1016/0092-8674(92)90623-K
      40. El Hage T., Decottignies P., Authier F. Endosomal proteolysis of diphtheria toxin without toxin translocation into the cytosol of rat liver in vivo. FEBS J. 2008, 275 (8), 1708–1722. https://doi.org/10.1111/j.1742-4658.2008.06326.x
      41. Heagy W. E., Neville D. M. J. Kinetics of protein synthesis inactivation by diphtheria toxin in toxin-resistant L cells. Evidence for a low efficiency receptor-mediated transport system. J. Biol. Chem. 1981, 256 (24), 12788–12792.
      42. Didsbury J. R., Moehring J. M., Moehring T. J. Binding and uptake of diphtheria toxin by toxin-resistant Chinese hamster ovary and mouse cells. Mol. Cell. Biol. 1983, 3 (7), 1283–1294. https://doi.org/10.1128/MCB.3.7.1283
      43. Labyntsev A. J., Kolybo D. V., Yurchenko E. S., Kaberniuk A. A., Korotkevych N. V., Komisarenko S. V. Effect of the T-domain on intracellular transport of diphtheria toxin. Ukr. Biochem. J. 2014, 86 (3), 77–87. https://doi.org/10.15407/ubj86.03.077
      44. Labyntsev A. J., Korotkevych N. V., Kolybo D. V., Komisarenko S. V. Effect of diphtheria toxin T-domain on endosomal pH. Ukr. Biochem. J. 2015, 87 (4), 13–23. https://doi.org/10.15407/ubj87.04.013
      45. Higashiyama S., Abraham J. A., Miller J., Fiddes J. C., Klagsbrun M. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science. 1991, 251 (4996), 936–939. https://doi.org/10.1126/science.1840698
      46. Iwamoto R., Mekada E. ErbB and HB-EGF signaling in heart development and function. Cell Struct. Funct. 2006, 31 (1), 1–14. https://doi.org/10.1247/csf.31.1
      47. Raab G., Klagsbrun M. Heparin-binding EGFlike growth factor. Biochim. Biophys. Acta. 1997, 1333 (3), F179–199.
      48. Higashiyama S., Abraham J. A., Klagsbrun M. Heparin-binding EGF-like growth factor stimulation of smooth muscle cell migration: dependence on interactions with cell surface heparan sulfate. J. Cell Biol. 1993, 122 (4), 933–940. https://doi.org/10.1083/jcb.122.4.933
      49. Mine N., Iwamoto R., Mekada E. HB-EGF promotes epithelial cell migration in eyelid development. Development. 2005, 132 (19), 4317–4326. https://doi.org/10.1242/dev.02030
      50. Marikovsky M., Vogt P., Eriksson E., Rubin J. S., Taylor W. G., Joachim S., Klagsbrun M. Wound fluid-derived heparinbinding EGF-like growth factor (HB-EGF) is synergistic with insulin-like growth factor-I for Balb/MK keratinocyte proliferation. J. Invest. Dermatol. 1996, 106 (4), 616–621. https://doi.org/10.1111/1523-1747.ep12345413
      51. Shirakata Y., Kimura R., Nanba D., Iwamoto R., Tokumaru S., Morimoto C., Yokota K., Nakamura M., Sayama K., Mekada E., Higashiyama S., Hashimoto K. Heparinbinding EGF-like growth factor accelerates keratinocyte migration and skin wound healing. J. Cell. Sci. 2005, 118 (Pt 11), 2363–2370. https://doi.org/10.1242/jcs.02346
      52. Tokumaru S., Higashiyama S., Endo T., Nakagawa T., Miyagawa J. I., Yamamori K., Hanakawa Y., Ohmoto H., Yoshino K., Shirakata Y., Matsuzawa Y., Hashimoto K., Taniguchi N. Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte migration in cutaneous wound healing. J. Cell Biol. 2000, 151 (2), 209–220. https://doi.org/10.1083/jcb.151.2.209
      53. Kimura R., Iwamoto R., Mekada E. Soluble form of heparin-binding EGF-like growth factor contributes to retinoic acid-induced epidermal hyperplasia. Cell Struct. Funct. 2005, 30 (2), 35–42. https://doi.org/10.1247/csf.30.35
      54. Asakura M., Kitakaze M., Takashima S., Liao Y., Ishikura F., Yoshinaka T., Ohmoto H., Node K., Yoshino K., Ishiguro H., Asanuma H., Sanada S., Matsumura Y., Takeda H., Beppu S., Tada M., Hori M., Higashiyama S. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HBEGF: metalloproteinase inhibitors as a new therapy. Nat. Med. 2002, 8 (1), 35–40. https://doi.org/10.1038/nm0102-35
      55. Miyagawa J., Higashiyama S., Kawata S., Inui Y., Tamura S., Yamamoto K., Nishida M., Nakamura T., Yamashita S., Matsuzawa Y. Localization of heparin-binding EGF-like growth factor in the smooth muscle cells and macrophages of human atherosclerotic plaques. J. Clin. Invest. 1995, 95 (1), 404–411. https://doi.org/10.1172/JCI117669
      56. Takemura T., Hino S., Kuwajima H., Yanagida H., Okada M., Nagata M., Sasaki S., Barasch J., Harris R.C., Yoshioka K. Induction of collecting duct morphogenesis in vitro by heparin-binding epidermal growth factor-like growth factor. J. Am. Soc. Nephrol. 2001, 12 (5), 964–972.
      57. Das S. K., Wang X. N., Paria B. C., Damm D., Abraham J. A., Klagsbrun M., Andrews G. K., Dey S. K. Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development. 1994, 120 (5), 1071–1083.
      58. Powell P. P., Klagsbrun M., Abraham J. A., Jones R. C. Eosinophils expressing heparinbinding EGF-like growth factor mRNA localize around lung microvessels in pulmonary hypertension. Am. J. Pathol. 1993, 143 (3), 784–793.
      59. Fu S. l., Bottoli I., Goller M., Vogt P. K. Heparin-binding epidermal growth factorlike growth factor, a v-Jun target gene, induces oncogenic transformation. Proc. Natl. Acad. Sci. U.S.A. 1999, 96 (10), 5716–5721. https://doi.org/10.1073/pnas.96.10.5716
      60. Kaberniuk A. A., Labyntsev A. I., Kolybo D. V., Oliĭnyk O. S., Redchuk T. A., Korotkevych N. V., Horchev V. F., Karakhim S. O., Komisarenko S. V. Fluorescent derivatives of diphtheria toxin subunit B and their interaction with Vero cells. Ukr. Biokhim. Zh. (1999). 2009, 81 (1), 67–77. (In Ukrainian).
      61. Uchida T., Pappenheimer A. M., Harper A. A. Diphtheria toxin and related proteins. 3. Reconstitution of hybrid “diphtheria toxin” from nontoxic mutant proteins. J. Biol. Chem. 1973, 248 (11), 3851–3854.
      62. Kageyama T., Ohishi M., Miyamoto S., Mizushima H., Iwamoto R., Mekada E. Diphtheria toxin mutant CRM197 possesses weak EF2-ADP-ribosyl activity that potentiates its anti-tumorigenic activity. J. Biochem. 2007, 142 (1), 95–104. https://doi.org/10.1093/jb/mvm116
      63. Qiao J., Ghani K., Caruso M. Diphtheria toxin mutant CRM197 is an inhibitor of protein synthesis that induces cellular toxicity. Toxicon. 2008, 51 (3), 473–477. https://doi.org/10.1016/j.toxicon.2007.09.010
      64. Kimura Y., Saito M., Kimata Y., Kohno K. Transgenic mice expressing a fully nontoxic diphtheria toxin mutant, not CRM197 mutant, acquire immune tolerance against diphtheria toxin. J. Biochem. 2007, 142 (1), 105–112. https://doi.org/10.1093/jb/mvm115
      65. Mekada E., Uchida T. Binding properties of diphtheria toxin to cells are altered by mutation in the fragment A domain. J. Biol. Chem. 1985, 260 (22), 12148–12153.
      66. Hu V. W., Holmes R. K. Single mutation in the A domain of diphtheria toxin results in a protein with altered membrane insertion behavior. Biochim. Biophys. Acta. 1987, 902 (1), 24–30. https://doi.org/10.1016/0005-2736(87)90132-5
      67. Malito E., Bursulaya B., Chen C., Surdo P. L., Picchianti M., Balducci E., Biancucci M., Brock A., Berti F., Bottomley M. J., Nissum M., Costantino P., Rappuoli R., Spraggon G. Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc. Natl. Acad. Sci. USA. 2012. https://doi.org/10.1073/pnas
      68. Salmas R. E., Mestanoglu M., Unlu A., Yurtsever M., Durdagi S. Mutated form (G52E) of inactive diphtheria toxin CRM197: molecular simulations clearly display effect of the mutation to NAD binding. J. Biomol. Struct. Dyn. 2016, 34 (11), 2462–2468. https://doi.org/10.1080/07391102.2015.1119060
      69. Papini E., Colonna R., Schiavo G., Cusinato F., Tomasi M., Rappuoli R., Montecucco C. Diphtheria toxin and its mutant crm 197 differ in their interaction with lipids. FEBS Lett. 1987, 215 (1), 73–78. https://doi.org/10.1016/0014-5793(87)80116-3
      70. Giannini G., Rappuoli R., Ratti G. The aminoacid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucl. Acids Res. 1984, 12 (10), 4063–4069. https://doi.org/10.1093/nar/12.10.4063
      71. Bigio M., Rossi R., Nucci D., Antoni G., Rappuoli R., Ratti G. Conformational changes in diphtheria toxoids. Analysis with monoclonal antibodies. FEBS Lett. 1987, 218 (2), 271–276. https://doi.org/10.1016/0014-5793(87)81060-8
      72. Kaczorek M., Delpeyroux F., Chenciner N., Streeck R. E., Murphy J. R., Boquet P., Tiollais P. Nucleotide sequence and expression of the diphtheria tox228 gene in Escherichia coli. Science. 1983, 221 (4613), 855–858. https://doi.org/10.1126/science.6348945
      73. Laird W., Groman N. Isolation and characterization of tox mutants of corynebacteriophage beta. J. Virol. 1976, 19 (1), 220–227.
      74. Riedel C. J., Muraszko K. M., Youle R. J. Diphtheria toxin mutant selectively kills cerebellar Purkinje neurons. Proc. Natl. Acad. Sci. U.S.A. 1990, 87 (13), 5051–5055. https://doi.org/10.1073/pnas.87.13.5051
      75. Greenfield L., Johnson V. G., Youle R. J. Mutations in diphtheria toxin separate binding from entry and amplify immunotoxin selectivity. Science. 1987, 238 (4826), 536–539. https://doi.org/10.1126/science.3498987
      76. Bacha P., Murphy J. R. Isolation and characterization of extragenic suppressor strains of Corynebacterium diphtheriae. J. Bacteriol. 1978, 136 (3), 1135–1142.
      77. Bacha P., Reichlin S. Systemic toxicity of diphtheria toxin-related fragments (CRM26, CRM45), a hormone-toxin hybrid protein (TRH-CRM45), and ricin A. Proc. Soc. Exp. Biol. Med. 1986, 181 (1), 131–138. https://doi.org/10.3181/00379727-181-42234
      78. Dell’Arciprete L., Colombatti M., Rappuoli R.,Tridente G. A C terminus cysteine of diphtheria toxin B chain involved in immunotoxin cell penetration and cytotoxicity. J. Immunol. 1988, 140 (7), 2466–2471.
      79. Papini E., Schiavo G., Tomasi M., Colombatti M., Rappuoli R., Montecucco C. Lipid interaction of diphtheria toxin and mutants with altered fragment B. 2. Hydrophobic photolabelling and cell intoxication. Eur. J. Biochem. 1987, 169 (3), 637–644. https://doi.org/10.1111/j.1432-1033.1987.tb13655.x
      80. Shafiee F., Rabbani M., Behdani M., Jahanian-Najafabadi A. Expression and purification of truncated diphtheria toxin, DT386, in Escherichia coli: An attempt for production of a new vaccine against diphtheria. Res. Pharm. Sci. 2016, 11 (5), 428–434. https://doi.org/10.4103/1735-5362.192496
      81. Barbieri J. T., Collier R. J. Expression of a mutant, full-length form of diphtheria toxin in Escherichia coli. Infect. Immun. 1987, 55 (7), 1647–1651.
      82. Shmelev V. A., Perovskaia O. N., Kopylov P. K., Nosova L. I., Popov S. G. Synthesis, secretion, and proteolytic degradation of diphtheria toxin in Escherichia coli. Mol. Gen. Mikrobiol. Virusol. 1991, (10), 3–8.
      83. Hemilä H., Glode L. M., Palva I. Production of diphtheria toxin CRM228 in B. subtilis. FEMS Microbiol. Lett. 1989, 53 (1–2), 193–198. https://doi.org/10.1111/j.1574-6968.1989.tb03621.x
      84. Zhou J., Petracca R. Secretory expression of recombinant diphtheria toxin mutants in B. subtilis. J. Tongji Med. Univ. 1999, 19 (4), 253–256. https://doi.org/10.1007/BF02886955
      85. Studier F. W. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J. Mol. Biol. 1991, 219 (1), 37–44. https://doi.org/10.1016/0022-2836(91)90855-Z
      86. Stefan A., Conti M., Rubboli D., Ravagli L., Presta E., Hochkoeppler A. Overexpression and purification of the recombinant diphtheria toxin variant CRM197 in Escherichia coli. J. Biotechnol. 2011, 156 (4), 245–252. doi: 10.1016/j.jbiotec. 2011.08.024.
      87. Manoilov K. Y., Gorbatiuk O. B., Usenko M. O., Shatursky O. Y., Borisova T. O., Kolybo D. V. The characterization of purifed recombinant protein CRM197 as a tool to study diphtheria toxin. Dopov. Nats. akad. nauk Ukr. 2016, 9, 124–133. https://doi.org/10.15407/dopovidi2017.02.088 (In Ukranian).
      88. Mahamad P., Boonchird C., Panbangred W. High level accumulation of soluble diphtheria toxin mutant (CRM197) with co-expression of chaperones in recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 2016, 100 (14), 6319–6330. https://doi.org/10.1007/s00253-016-7453-4
      89. Dukhovlinov I. V., Fedorova E. A., Bogomolova E. G., Dobrovolskaya O. A., Chernyaeva E. N., Al-Shekhadat R. I., Simbirtsev A. S. Production of recombinant protein CRM197 in Escherichia coli. Russian Journal of Infection and Immunity. 2015, 5 (1), 37. https://doi.org/10.15789/2220-7619-2015-1-37-44 (In Russian).
      90. Kaberniuk A. A., Oliinyk O. S., Redchuk T. A., Romaniuk S. I., Kolybo D. V., Komisarenko S. V. Cloning of recombinant subunits of Corynebacterium diphtheriae diphtheria toxin and their expression in Escherichia coli. Dopov. Nats. akad. nauk Ukr. 2008, 3, 160–166. (In Ukrainian).
      91. Lee C. W., Lee S. F., Halperin S. A. Expression and Immunogenicity of a Recombinant Diphtheria Toxin Fragment A in Streptococcus gordonii. Appl. Environ. Microbiol. 2004, 70 (8), 4569–4574. https://doi.org/10.1128/AEM.70.8.4569-4574.2004
      92. Nascimento D. V., Lemes E. M. B., Queiroz J. L. S., Silva Jr. J. G., Nascimento H. J., Silva E. D., Hirata Jr. R., Dias A. A. S. O., Santos C. S., Pereira G. M. B., Mattos-Guaraldi A. L., Armoa G. R. G. Expression and purification of the immunogenically active fragment B of the Park Williams 8 Corynebacterium diphtheriae strain toxin. Braz. J. Med. Biol. Res. 2010, 43 (5), 460–466. https://doi.org/10.1590/S0100-879X2010007500032
      93. Johnson N., Pickett M. A., Watt P. J., Clarke I. N., Heckels J. E. Construction of an epitope vector utilising the diphtheria toxin B-subunit. FEMS Microbiol. Lett. 1997, 146 (1), 91–96. https://doi.org/10.1111/j.1574-6968.1997.tb10176.x
      94. Suzuki K., Mizushima H., Abe H., Iwamoto R., Nakamura H., Mekada E. Identification of diphtheria toxin R domain mutants with enhanced inhibitory activity against HBEGF. J. Biochem. 2015, 157 (5), 331–343. https://doi.org/10.1093/jb/mvu079
      95. Kumar A., Das G., Bose B. Recombinant receptor-binding domain of diphtheria toxin increases the potency of curcumin by enhancing cellular uptake. Mol. Pharm. 2014, 11 (1), 208–217. https://doi.org/10.1021/mp400378x
      96. Esbensen Q. Y., Falnes P. O., Olsnes S., Madshus I. H. Subcloning and characterization of the binding domain of fragment B of diphtheria toxin. Biochem. J. 1993, 294 (Pt 3), 663–666. https://doi.org/10.1042/bj2940663
      97. Labyntsev A. J., Korotkevych N. V., Manoilov K. J., Kaberniuk A. A., Kolybo D. V., Komisarenko S. V. Recombinant fluorescent models for studying the diphtheria toxin. Russ. J. Bioorg. Chem. 2014, 40 (4), 401–409. https://doi.org/10.1134/S1068162014040086
      98. Labyntsev A. I., Korotkevich N. V., Kaberniuk A. A., Romaniuk S. I., Kolybo D. V., Komisarenko S. V. Interaction of diphtheria toxin B subunit with sensitive and insensitive mammalian cells. Ukr. Biokhim. Zh. (1999). 2010, 82 (6), 65–75. (In Ukranian).
      99. Blanke S. R., Huang K., Collier R. J. Activesite mutations of diphtheria toxin: role of tyrosine-65 in NAD binding and ADPribosylation. Biochemistry. 1994, 33 (51), 15494–15500. https://doi.org/10.1021/bi00255a031
      100. Wilson B. A., Blanke S. R., Reich K. A., Collier R. J. Active-site mutations of diphtheria toxin. Tryptophan 50 is a major determinant of NAD affinity. J. Biol. Chem. 1994, 269 (37), 23296–23301.
      101. Blanke S. R., Huang K., Wilson B. A., Papini E., Covacci A., Collier R. J. Active-site mutations of the diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADPribosylation of elongation factor 2. Biochemistry. 1994, 33 (17), 5155–5161. https://doi.org/10.1021/bi00183a019
      102. Tweten R. K., Barbieri J. T., Collier R. J. Diphtheria toxin. Effect of substituting aspartic acid for glutamic acid 148 on ADPribosyltransferase activity. J. Biol. Chem. 1985, 260 (19), 10392–10394.
      103. Johnson V. G., Nicholls P. J. Histidine 21 does not play a major role in diphtheria toxin catalysis. J. Biol. Chem. 1994, 269 (6), 4349–4354.
      104. Papini E., Schiavo G., Rappuoli R., Montecucco C. Histidine-21 is involved in diphtheria toxin NAD+ binding. Toxicon. 1990, 28 (6), 631–635.https://doi.org/10.1016/0041-0101(90)90251-2
      105. Fu H., Blanke S. R., Mattheakis L. C., Collier R. J. Selection of diphtheria toxin active-site mutants in yeast. Rediscovery of glutamic acid-148 as a key residue. Adv. Exp. Med. Biol. 1997, 41945–41952.
      106. Zhao G., London E. Behavior of diphtheria toxin T domain containing substitutions that block normal membrane insertion at Pro345 and Leu307: control of deep membrane insertion and coupling between deep insertion of hydrophobic subdomains. Biochemistry. 2005, 44 (11), 4488–4498. https://doi.org/10.1021/bi047705o
      107. Kaul P., Silverman J., Shen W. H., Blanke S. R., Huynh P. D., Finkelstein A., Collier R. J. Roles of Glu 349 and Asp 352 in membrane insertion and translocation by diphtheria toxin. Protein Sci. 1996, 5 (4), 687–692. https://doi.org/10.1002/pro.5560050413
      108. Johnson V. G., Youle R. J. A point mutation of proline 308 in diphtheria toxin B chain inhibits membrane translocation of toxin conjugates. J. Biol. Chem. 1989, 264 (30), 17739–17744.
      109. O’Keefe D., Collier R. J. Cloned diphtheria toxin within the periplasm of Escherichia coli causes lethal membrane damage at low pH. Proc. Natl. Acad. Sci. U.S.A. 1989, 86 (1), 343–346. https://doi.org/10.1073/pnas.86.1.343
      110. O’Keefe D. O., Cabiaux V., Choe S., Eisenberg D., Collier R. J. pH-dependent insertion of proteins into membranes: B-chain mutation of diphtheria toxin that inhibits membrane translocation, Glu-349----Lys. Proc. Natl. Acad. Sci. U.S.A. 1992, 89 (13), 6202–6206. https://doi.org/10.1073/pnas.89.13.6202
      111. Rodnin M. V., Kyrychenko A., Kienker P., Sharma O., Posokhov Y. O., Collier R. J., Finkelstein A., Ladokhin A. S. Conformational Switching of the Diphtheria Toxin T Domain. J. Mol. Biol. 2010. https://doi.org/10.1016/j.jmb.2010.07.024
      112. Antignani A., Youle R. J. Endosome fusion induced by diphtheria toxin translocation domain. Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (23), 8020–8025. https://doi.org/10.1073/pnas.0711707105
      113. Cabiaux V., Mindell J., Collier R. J. Membrane translocation and channelforming activities of diphtheria toxin are blocked by replacing isoleucine 364 with lysine. Infect. Immun. 1993, 61 (5), 2200–2202.
      114. Ren J., Sharpe J. C., Collier R. J., London E. Membrane Translocation of Charged Residues at the Tips of Hydrophobic Helices in the T Domain of Diphtheria Toxin†. Biochemistry. 1999, 38 (3), 976–984.https://doi.org/10.1021/bi981576s
      115. Senzel L., Gordon M., Blaustein R. O., Oh K. J., Collier R. J., Finkelstein A. Topography of Diphtheria Toxin’s T Domain in the Open Channel State. J. Gen. Physiol. 2000, 115 (4), 421–434. https://doi.org/10.1085/jgp.115.4.421
      116. Kienker P. K., Wu Z., Finkelstein A. Topography of the TH5 Segment in the Diphtheria Toxin T-Domain Channel. J. Membr. Biol. 2016, 249 (1–2), 181–196. https://doi.org/10.1007/s00232-015-9859-9
      117. Kienker P. K., Wu Z., Finkelstein A. Mapping the membrane topography of the TH6-TH7 segment of the diphtheria toxin T-domain channel. J. Gen. Physiol. 2015, 145 (2), 107–125. https://doi.org/10.1085/jgp.201411326
      118. Vargas-Uribe M., Rodnin M. V., Kienker P., Finkelstein A., Ladokhin A. S. Crucial Role of H322 in Folding of the Diphtheria Toxin T-Domain into the Open-Channel State. Biochemistry. 2013, 52 (20), 3457–3463. https://doi.org/10.1021/bi400249f
      119. Rodnin M. V., Kyrychenko A., Kienker P., Sharma O., Vargas-Uribe M., Collier R. J., Finkelstein A., Ladokhin A. S. Replacement of C-terminal histidines uncouples membrane insertion and translocation in diphtheria toxin T-domain. Biophys. J. 2011, 101 (10), L41–43. https://doi.org/10.1016/j.bpj.2011.10.018
      120. Wu Z., Jakes K. S., Samelson-Jones B. S., Lai B., Zhao G., London E., Finkelstein A. Protein translocation by bacterial toxin channels: a comparison of diphtheria toxin and colicin Ia. Biophys. J. 2006, 91 (9), 3249–3256. https://doi.org/10.1529/biophysj.106.085753
      121. Finkelstein A., Oh K. J., Senzel L., Gordon M., Blaustein R. O., Collier R. J. The diphtheria toxin channel-forming T-domain translocates its own NH2-terminal region and the catalytic domain across planar phospholipid bilayers. Int. J. Med. Microbiol. 2000, 290 (4–5), 435–440. https://doi.org/10.1016/S1438-4221(00)80059-4
      122. Gordon M., Finkelstein A. The number of subunits comprising the channel formed by the T domain of diphtheria toxin. J. Gen. Physiol. 2001, 118 (5), 471–480. https://doi.org/10.1085/jgp.118.5.471
      123. Finkelstein A. Proton-coupled protein transport through the anthrax toxin channel. Philos Trans. R Soc. Lond. B Biol. Sci. 2009, 364 (1514), 209–215. https://doi.org/10.1098/rstb.2008.0126
      124. Deleers M., Beugnier N., Falmagne P., Cabiaux V., Ruysschaert J. M. Localization in diphtheria toxin fragment B of a region that induces pore formation in planar lipid bilayers at low pH. FEBS Lett. 1983, 160 (1–2), 82–86. https://doi.org/10.1016/0014-5793(83)80941-7
      125. Shiver J. W., Donovan J. J. Interactions of diphtheria toxin with lipid vesicles: determinants of ion channel formation. Biochim. Biophys. Acta. 1987, 903 (1), 48–55. https://doi.org/10.1016/0005-2736(87)90154-4
      126. Murphy J. R. Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins (Basel). 2011, 3 (3), 294–308. https://doi.org/10.3390/toxins3030294
      127. Saito M., Iwawaki T., Taya C., Yonekawa H., Noda M., Inui Y., Mekada E., Kimata Y.,Tsuru A., Kohno K. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol. 2001, 19 (8), 746–750. https://doi.org/10.1038/90795
      128. Furukawa N., Saito M., Hakoshima T., Kohno K. A diphtheria toxin receptor deficient in epidermal growth factorlike biological activity. J. Biochem. 2006, 140 (6), 831–841. https://doi.org/10.1093/jb/mvj216
      129. Matsuoka K., Saito M., Shibata K., Sekine M., Shitara H., Taya C., Zhang X., Takahashi T. A., Kohno K., Kikkawa Y., Yonekawa H. Generation of mouse models for type 1 diabetes by selective depletion of pancreatic beta cells using toxin receptormediated cell knockout. Biochem. Biophys. Res. Commun. 2013, 436 (3), 400–405. https://doi.org/10.1016/j.bbrc.2013.05.114
      130. Jung S., Unutmaz D., Wong P., Sano G.-I., De los Santos K., Sparwasser T., Wu S., Vuthoori S., Ko K., Zavala F., Pamer E. G., Littman D. R., Lang R. A. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity. 2002, 17 (2), 211–220. https://doi.org/10.1016/S1074-7613(02)00365-5
      131. Bennett C. L., van Rijn E., Jung S., Inaba K., Steinman R. M., Kapsenberg M. L., Clausen B. E. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J. Cell Biol. 2005, 169 (4), 569–576. https://doi.org/10.1083/jcb.200501071
      132. Ruedl C., Jung S. DTR-mediated conditional cell ablation-Progress and challenges. Eur. J. Immunol. 2018, 48 (7), 1114–1119. https://doi.org/10.1002/eji.201847527
      133. Aguila H. L., Hershberger R. J., Weissman I. L. Transgenic mice carrying the diphtheria toxin A chain gene under the control of the granzyme A promoter: expected depletion of cytotoxic cells and unexpected depletion of CD8 T cells. Proc. Natl. Acad. Sci. U S A. 1995, 92 (22), 10192–10196. https://doi.org/10.1073/pnas.92.22.10192
      134. Brockschnieder D., Lappe-Siefke C., Goebbels S., Boesl M. R., Nave K.-A., Riethmacher D. Cell depletion due to diphtheria toxin fragment A after Cre-mediated recombination. Mol. Cell. Biol. 2004, 24 (17), 7636–7642. doi: 10.1128/MCB.24.17.7636-7642.2004. https://doi.org/10.1128/MCB.24.17.7636-7642.2004
      135. Nakamura S., Terashima M., Kikuchi N., Kimura M., Maehara T., Saito A., Sato M. A new mouse model for renal lesions produced by intravenous injection of diphtheria toxin A-chain expression plasmid. BMC Nephrol. 2004, 54. doi: 10.1186/1471-2369-5-4. https://doi.org/10.1186/1471-2369-5-4
      136. Lang R. A., Bishop J. M. Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell. 1993, 74 (3), 453–462. https://doi.org/10.1016/0092-8674(93)80047-I
      137. Brockschnieder D., Pechmann Y., Sonnenberg-Riethmacher E., Riethmacher D. An improved mouse line for Cre-induced cell ablation due to diphtheria toxin A, expressed from the Rosa26 locus. Genesis. 2006, 44 (7), 322–327. https://doi.org/10.1002/dvg.20218
      138. Frank A. C., Johnson M. A. Expressing the Diphtheria Toxin A Subunit from the HAP2(GCS1) Promoter Blocks Sperm Maturation and Produces Single Sperm-Like Cells Capable of Fertilization. Plant Physiol. 2009, 151 (3), 1390–1400. https://doi.org/10.1104/pp.109.144204
      139. Talbird S. E., Graham J., Mauskopf J., Masseria C., Krishnarajah G. Impact of tetanus, diphtheria, and acellular pertussis (Tdap) vaccine use in wound management on health care costs and pertussis cases. J. Manag. Care Spec. Pharm. 2015, 21 (1), 88–99, 99a-c. https://doi.org/10.18553/jmcp.2015.21.1.88
      140. Rappuoli R., Bagnoli F. Vaccine Design: Innovative Approaches and Novel Strategies. Horizon Scientific Press, 2011.
      141. Robbins J. B., Schneerson R., Keith J. M., Miller M. A., Kubler-Kielb J., Trollfors B. Pertussis vaccine: a critique. Pediatr. Infect. Dis. J. 2009, 28 (3), 237–241. https://doi.org/10.1097/INF.0b013e31818a8958
      142. Mooi F. R. Bordetella pertussis and vaccination: the persistence of a genetically monomorphic pathogen. Infect. Genet. Evol. 2010, 10 (1), 36–49. https://doi.org/10.1016/j.meegid.2009.10.007
      143. Pichichero M. E. Protein carriers of conjugate vaccines. Hum. Vaccin. Immunother. 2013, 9 (12), 2505–2523. https://doi.org/10.4161/hv.26109
      144. Shinefield H. R. Overview of the development and current use of CRM(197) conjugate vaccines for pediatric use. Vaccine. 2010, 28 (27), 4335–4339. https://doi.org/10.1016/j.vaccine.2010.04.072
      145. Bröker M., Costantino P., DeTora L., McIntosh E. D., Rappuoli R. Biochemical and biological characteristics of crossreacting material 197 CRM197, a nontoxic mutant of diphtheria toxin: use as a conjugation protein in vaccines and other potential clinical applications. Biologicals. 2011, 39 (4), 195–204. https://doi.org/10.1016/j.biologicals.2011.05.004
      146. Buzzi S., Maistrello I. Inhibition of growth of Erlich tumors in Swiss mice by diphtheria toxin. Cancer Res. 1973, 33 (10), 2349–2353.
      147. Tang X.-H., Deng S., Li M., Lu M.-S. Cross-reacting material 197 reverses the resistance to paclitaxel in paclitaxelresistant human ovarian cancer. Tumour Biol. 2016, 37 (4), 5521–5528. https://doi.org/10.1007/s13277-015-4412-0
      148. Yagi H., Yotsumoto F., Sonoda K., Kuroki M., Mekada E., Miyamoto S. Synergistic antitumor effect of paclitaxel with CRM197, an inhibitor of HB-EGF, in ovarian cancer. Int. J. Cancer. 2009, 124 (6), 1429–1439. https://doi.org/10.1002/ijc.24031
      149. Nam S.O., Yotsumoto F., Miyata K., Fukagawa S., Odawara T., Manabe S., Ishikawa T., Kuroki M., Yasunaga S., Miyamoto S. Anti-tumor Effect of Intravenous Administration of CRM197 for Triple-negative Breast Cancer Therapy. Anticancer Res. 2016, 36 (7), 3651–3657.
      150. Buzzi S., Rubboli D., Buzzi G., Buzzi A. M., Morisi C., Pironi F. CRM197 (nontoxic diphtheria toxin): effects on advanced cancer patients. Cancer Immunol. Immunother. 2004, 53 (11), 1041–1048. https://doi.org/10.1007/s00262-004-0546-4
      151. Tsujioka H., Fukami T., Yotsumoto F., Ueda T., Hikita S., Takahashi Y., Kondo H., Kuroki M., Miyamoto S. A possible clinical adaptation of CRM197 in combination with conventional chemotherapeutic agents for ovarian cancer. Anticancer Res. 2011, 31 (7), 2461–2465.
      152. Lian C., Ruan L., Shang D., Wu Y., Lu Y., L P., Yang Y., Wei Y., Dong X., Ren D., Chen K., Liu H., Tu Z. Heparin-Binding Epidermal Growth Factor-Like Growth Factor as a Potent Target for Breast Cancer Therapy. Cancer Biother. Radiopharm. 2016, 31 (3), 85–90. https://doi.org/10.1089/cbr.2015.1956
      153. Yotsumoto F., Oki E., Tokunaga E., Maehara Y., Kuroki M., Miyamoto S. HB-EGF orchestrates the complex signals involved in triple-negative and trastuzumab-resistant breast cancer. Int. J. Cancer. 2010, 127 (11), 2707–2717. https://doi.org/10.1002/ijc.25472
      154. Dateoka S., Ohnishi Y., Kakudo K. Effects of CRM197, a specific inhibitor of HB-EGF, in oral cancer. Med. Mol. Morphol. 2012, 45 (2), 91–97. https://doi.org/10.1007/s00795-011-0543-6
      155. Sanui A., Yotsumoto F., Tsujioka H., Fukami T., Horiuchi S., Shirota K., Yoshizato T., Kawarabayashi T., Kuroki M., Miyamoto S. HB-EGF inhibition in combination with various anticancer agents enhances its antitumor effects in gastric cancer. Anticancer Res. 2010, 30 (8), 3143–3149.
      156. Kunami N., Yotsumoto F., Ishitsuka K., Fukami T., Odawara T., Manabe S., Ishikawa T., Tamura K., Kuroki M., Miyamoto S. Antitumor effects of CRM197, a specific inhibitor of HB-EGF, in T-cell acute lymphoblastic leukemia. Anticancer Res. 2011, 31 (7), 2483–2488.
      157. Wang F., Liu R., Lee S.W., Sloss C.M., Couget J., Cusack J.C. Heparin-binding EGF-like growth factor is an early response gene to chemotherapy and contributes to chemotherapy resistance. Oncogene. 2007, 26 (14), 2006–2016. https://doi.org/10.1038/sj.onc.1209999
      158. Zhou Z. N., Sharma V. P., Beaty B. T., Roh-Johnson M., Peterson E. A., Van Rooijen N., Kenny P. A., Wiley H. S., Condeelis J. S., Segall J. E. Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo. Oncogene. 2014, 33 (29), 3784–3793. https://doi.org/10.1038/onc.2013.363
      159. Frankel A. E., Woo J. H., Ahn C., Foss F. M., Duvic M., Neville P. H., Neville D. M. Resimmune, an anti-CD3 recombinant immunotoxin, induces durable remissions in patients with cutaneous T-cell lymphoma. Haematologica. 2015, 100 (6), 794–800. https://doi.org/10.3324/haematol.2015.123711
      160. Wolska-Washer A., Robak P., Smolewski P., Robak T. Emerging antibody-drug conjugates for treating lymphoid malignancies. Expert Opin. Emerg. Drugs. 2017, 22 (3), 259–273. https://doi.org/10.1080/14728214.2017.1366447
      161. Schmohl J. U., Todhunter D., Taras E., Bachanova V., Vallera D. A. Development of a Deimmunized Bispecific Immunotoxin dDT2219 against B-Cell Malignancies. Toxins (Basel). 2018, 10 (1). https://doi.org/10.3390/toxins10010032
      162. Zheng Q., Wang Z., Zhang H., Huang Q., Madsen J. C., Sachs D. H., Huang C. A., Wang Z. Diphtheria toxin-based anti-human CD19 immunotoxin for targeting human CD19+ tumors. Mol. Oncol. 2017, 11 (5), 584–594. https://doi.org/10.1002/1878-0261.12056
      163. Kreitman R. J., Tallman M. S., Robak T., Coutre S., Wilson W. H., Stetler-Stevenson M., FitzGerald D. J., Santiago L., Gao G., La nasa M. C., Pastan I. Minimal residual hairy cell leukemia eradication with moxetumomab pasudotox: phase 1 results and long-term follow-up. Blood. 2018, 131 (21), 2331–2334.https://doi.org/10.1182/blood-2017-09-803072
      164. Wayne A. S., Shah N. N., Bhojwani D., Silverman L. B., Whitlock J. A., Stetler-Steven son M., Sun W., Liang M., Yang J., Kreitman R. J., Lanasa M. C., Pastan I. Phase 1 study of the anti-CD22 immunotoxin moxetumomab pasudotox for childhood acute lymphoblastic leukemia. Blood. 2017, 130 (14), 1620–1627. https://doi.org/10.1182/blood-2017-02-749101
      165. Woo J. H., Lee Y.-J., Neville D. M., Frankel A. E. Pharmacology of anti-CD3 diphtheria immunotoxin in CD3 positive T-cell lymphoma trials. Meth. Mol. Biol. 2010, 651157–651175. https://doi.org/10.1007/978-1-60761-786-0_10
      166. Thompson J., Hu H., Scharff J., Neville D. M. An anti-CD3 single-chain immunotoxin with a truncated diphtheria toxin avoids inhibition by pre-existing antibodies in human blood. J. Biol. Chem. 1995, 270 (47), 28037–28041. https://doi.org/10.1074/jbc.270.47.28037
      167. Wang Z., Wei M., Zhang H., Chen H., Germana S., Huang C. A., Madsen J. C., Sachs D. H., Wang Z. Diphtheria-toxin based antihuman CCR4 immunotoxin for targeting human CCR4(+) cells in vivo. Mol Oncol. 2015, 9 (7), 1458–1470. https://doi.org/10.1016/j.molonc.2015.04.004
      168. Testa U., Riccioni R., Biffoni M., Diverio D., Lo-Coco F., Fo R., Peschle C., Frankel A. E. Diphtheria toxin fused to variant human interleukin-3 induces cytotoxicity of blasts from patients with acute myeloid leukemia according to the level of interleukin-3 receptor expression. Blood. 2005, 106 (7), 2527–2529. https://doi.org/10.1182/blood-2005-02-0540
      169. Wen Z. L., Tao X., Lakkis F., Kiyokawa T., Murphy J. R. Diphtheria toxin-related alphamelanocyte-stimulating hormone fusion toxin. Internal in-frame deletion from Thr387 to His485 results in the formation of a highly potent fusion toxin which is resistant to proteolytic degradation. J. Biol. Chem. 1991, 266 (19), 12289–12293.
      170. Zhang Y., Schulte W., Pink D., Phipps K., Zijlstra A., Lewis J. D., Waisman D. M. Sensitivity of cancer cells to truncated diphtheria toxin. PLoS ONE. 2010, 5 (5), e10498. https://doi.org/10.1371/journal.pone.0010498
      171. Ramakrishnan S., Olson T. A., Bautch V. L., Mohanraj D. Vascular endothelial growth factor-toxin conjugate specifically inhibits KDR/flk-1-positive endothelial cell proliferation in vitro and angiogenesis in vivo. Cancer Res. 1996, 56 (6), 1324–1330.
      172. Wild R., Yokoyama Y., Dings R. P. M., Ramakrishnan S. VEGF-DT385 toxin conjugate inhibits mammary adenocarcinoma development in a transgenic mouse model of spontaneous tumorigenesis. Breast Cancer Res. Treat. 2004, 85 (2), 161–171. https://doi.org/10.1023/B:BREA.0000025407.02896.ec
      173. Murphy J. R., Bishai W., Borowski M., Miyanohara A., Boyd J., Nagle S. Genetic construction, expression, and melanomaselective cytotoxicity of a diphtheria toxinrelated alpha-melanocyte-stimulating hormone fusion protein. Proc. Natl. Acad. Sci. U.S.A. 1986, 83 (21), 8258–8262. https://doi.org/10.1073/pnas.83.21.8258
      174. Williams D. P., Wen Z., Watson R. S., Boyd J., Strom T. B., Murphy J. R. Cellular processing of the interleukin-2 fusion toxin DAB486-IL-2 and efficient delivery of diphtheria fragment A to the cytosol of target cells requires Arg194. J. Biol. Chem. 1990, 265 (33), 20673–20677.
      175. Chan C. H., Blazar B. R., Greenfield L., Kreitman R. J., Vallera D. A. Reactivity of murine cytokine fusion toxin, diphtheria toxin390-murine interleukin-3 (DT390-mIL-3), with bone marrow progenitor cells. Blood. 1996, 88 (4), 1445–1456.
      176. Black J. H., McCubrey J. A., Willing ham M. C., Ramage J., Hogge D. E., Frankel A. E. Diphtheria toxin-interleukin-3 fusion protein (DT(388)IL3) prolongs disease-free survival of leukemic immunocompromised mice. Leukemia. 2003, 17 (1), 155–159. https://doi.org/10.1038/sj.leu.2402744
      177. Cohen K. A., Liu T. F., Cline J. M., Wagner J. D., Hall P. D., Frankel A. E. Toxicology and pharmacokinetics of DT388IL3, a fusion toxin consisting of a truncated diphtheria toxin (DT388) linked to human interleukin 3 (IL3), in cynomolgus monkeys. Leuk. Lymphoma. 2004, 45 (8), 1647–1656. https://doi.org/10.1080/10428190410001663572
      178. Li Y. M., Vallera D. A., Hall W. A. Diphtheria toxin-based targeted toxin therapy for brain tumors. J. Neurooncol. 2013, 114 (2), 155–164. https://doi.org/10.1007/s11060-013-1157-8
      179. Chadwick D. E., Williams D. P., Niho Y., Murphy J. R., Minden M. D. Cytotoxicity of a recombinant diphtheria toxin-granulocyte colony-stimulating factor fusion protein on human leukemic blast cells. Leuk. Lymphoma. 1993, 11 (3–4), 249–262. https://doi.org/10.3109/10428199309087002
      180. Hotchkiss C. E., Hall P. D., Cline J. M., Willingham M. C., Kreitman R. J., Gardin J., Latimer A., Ramage J., Feely T., DeLatte S., Tagge E. P., Frankel A. E. Toxicology and pharmacokinetics of DTGM, a fusion toxin consisting of a truncated diphtheria toxin (DT388) linked to human granulocytemacrophage colony-stimulating factor, in cynomolgus monkeys. Toxicol. Appl. Pharmacol. 1999, 158 (2), 152–160. https://doi.org/10.1006/taap.1999.8691
      181. Hall P.D., Willingham M.C., Kreitman R.J., Frankel A.E. DT388-GM-CSF, a novel fusion toxin consisting of a truncated diphtheria toxin fused to human granulocytemacrophage colony-stimulating factor, prolongs host survival in a SCID mouse model of acute myeloid leukemia. Leukemia. 1999, 13 (4), 629–633.  https://doi.org/10.1038/sj.leu.2401357
      182. Feuring-Buske M., Frankel A., Gerhard B., Hogge D. Variable cytotoxicity of diphtheria toxin 388-granulocyte-macrophage colonystimulating factor fusion protein for acute myelogenous leukemia stem cells. Exp. Hematol. 2000, 28 (12), 1390–1400. https://doi.org/10.1016/S0301-472X(00)00542-7
      183. Ramage J. G., Vallera D. A., Black J. H., Ap lan P. D., Kees U. R., Frankel A. E. The diphtheria toxin/urokinase fusion protein (DTAT) is selectively toxic to CD87 expressing leukemic cells. Leuk. Res. 2003, 27 (1), 79–84. https://doi.org/10.1016/S0145-2126(02)00077-2
      184. Hagihara N., Walbridge S., Olson A. W., Oldfield E. H., Youle R. J. Vascular protection by chloroquine during brain tumor therapy with Tf-CRM107. Cancer Res. 2000, 60 (2), 230–234.
      185. Kreitman R. J. Immunotoxins for targeted cancer therapy. AAPS J. 2006, 8 (3), E532-551. https://doi.org/10.1208/aapsj080363
      186. Wayne A. S., FitzGerald D. J., Kreit man R. J., Pastan I. Immunotoxins for leukemia. Blood. 2014, 123 (16), 2470–2477. https://doi.org/10.1182/blood-2014-01-492256
      187. Turturro F. Denileukin diftitox: a biotherapeutic paradigm shift in the treatment of lymphoid-derived disorders. Expert Rev Anticancer Ther. 2007, 7 (1), 11–17. https://doi.org/10.1586/14737140.7.1.11
      188. Duvic M., Talpur R. Optimizing denileukin diftitox (Ontak) therapy. Future Oncol. 2008, 4 (4), 457–469. https://doi.org/10.2217/14796694.4.4.457
      189. Urieto J. O., Liu T., Black J. H., Cohen K. A., Hall P. D., Willingham M. C., Pennell L. K., Hogge D. E., Kreitman R. J., Frankel A. E. Expression and purification of the recombinant diphtheria fusion toxin DT388IL3 for phase I clinical trials. Protein Expr. Purif. 2004, 33 (1), 123–133. https://doi.org/10.1016/j.pep.2003.09.003
      190. Hogge D. E., Yalcintepe L., Wong S.-H., Gerhard B., Frankel A. E. Variant diphtheria toxin-interleukin-3 fusion proteins with increased receptor affinity have enhanced cytotoxicity against acute myeloid leukemia progenitors. Clin. Cancer Res. 2006, 12 (4), 1284–1291. https://doi.org/10.1158/1078-0432.CCR-05-2070
      191. Orr N., Galen J. E., Levine M. M. Expression and Immunogenicity of a Mutant Diphtheria Toxin Molecule, CRM197, and Its Fragments in Salmonella typhi Vaccine Strain CVD 908-htrA. Infect Immun. 1999, 67 (8), 4290–4294.
      192. Kaberniuk A. A., Oliinyk O. S., Kolybo D. V., Komisarenko S. V. Toxin-neutralizing properties of antibodies to diphtheria toxin recombinant subunits A and B and a new method of their estimation. Ukr. Biokhim. Zh. (1999). 2009, 81 (3), 92–101. (In Ukrainian).
      193. Pavlov P. V., Leonova A. G. Effect of the products of protein splitting in the culture medium on toxin formation. II. Antigen and immunogenic properties of diphtheria toxins (toxoids) obtained on the medium, digested by 2 enzymes, during culture of the Weisensee strain. Zh. Mikrobiol. Epidemiol. Immunobiol. 1961, 32, 95–99. (In Russian).
      194. Romaniuk S. I., Kolibo D. B., Komisarenko S. V. Perspectives of application of recombinant diphtheria toxin derivatives. Bioorg. Khim. 2012, 38 (6), 639–652. https://doi.org/10.1134/S106816201206012X
      195. Liu W., Onda M., Lee B., Kreitman R. J., Hassan R., Xiang L., Pastan I. Recombinant immunotoxin engineered for low immunogenicity and antigenicity by identifying and silencing human B-cell epitopes. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (29), 11782–11787. https://doi.org/10.1073/pnas.1209292109
      196. Mazor R., Onda M., Pastan I. Immunogenicity of therapeutic recombinant immunotoxins. Immunol. Rev. 2016, 270 (1), 152–164. https://doi.org/10.1111/imr.12390
      197. Onda M., Beers R., Xiang L., Nagata S., Wang Q.-C., Pastan I. An immunotoxin with greatly reduced immunogenicity by identification and removal of B cell epitopes. Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (32), 11311–11316. https://doi.org/10.1073/pnas.0804851105
      198. Flavell D. J. Countering immunotoxin immunogenicity. Br. J. Cancer. 2016, 114 (11), 1177–1179. https://doi.org/10.1038/bjc.2016.84