Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2018 № 2 ELECTRONIC INFORMATION SYSTEMS IN BIOTECHNOLOGY O. M. KLYUCHKO
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

"Biotechnologia Acta" V. 11, No 2, 2018
https://doi.org/10.15407/biotech11.02.005 
Р. 5-22, Bibliography 151, English
Universal Decimal Classification: 004:591.5:612:616-006

ELECTRONIC INFORMATION SYSTEMS IN BIOTECHNOLOGY

O. M. KLYUCHKO

Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv

The aim of the work was to generalize and analyze the use of electronic information systems in biotechnology in order to create new versions of these systems. The publications concerning the systems of different types for solving the problems in biotechnology were studied. Similar systems which traditionally belong to biology and medicine were classified. The prospects of their application for development of more advanced electronic systems were considered.

Key words: bioinformatics, electronic information systems, databases.

Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018

  • References
    • 1. Klyuchko O. M. Information and computer technologies in biology and medicine. Kyiv: NAU-druk. 2008, 252 p. (In Ukrainian).

      2. Piatigorsky B. Ya., Zaitman G. A., Cherkask y V. L., Chinarov V. A. Automatic electrophysiological experiment. Kyiv: Nauk. dumka. 1985. 216 p. (In Russian).

      3. Klyuchko O. М. On the mathematical methods in biology and medicine. Biotechnol. acta. 2017, 10 (3), 31–40. https://doi.org/10.15407/biotech10. 03.031.

      4. Klyuchko O. М. Application of artificial neural networks method in biotechnology. Biotechnol. acta. 2017, 10 (4), 5–13. https://doi.org/10.15407/ biotech10.04.005.

      5. Klyuchko O. М. Cluster analysis in biotechnology. Biotechnol. acta. 2017, 10 (5), 5–18. https://doi. org/10.15407/biotech10.05.005.

      6. Klyuchko O. М. Technologies of brain imag es processing. Biotechnol. acta. 2017, 10 (6), 5–17. https://doi.org/10.15407/biotech10.05.005

      7. Tasseff R. A. Mathematical Models in Biotechnology. PLoS One. 5:e8864, 2010.

      8. Mata-Alvarez J. Mathematical Modeling in Biotechnology. Biotechnology. V. II. 2004. https://www.eolss.net/sample-chapters/ C17/ E6-58-02-04.pdf.

      9. Gordeev L. S. Mathematical Modeling in Chemical Engineering and Biotechnology. Theoret ical Foundations of Chemical Engineering. 2014, 48 (3), 225–229. https://link.springer.com/article/10.1134/0040579514030099.

      10. Schnase J. L., Cushing J., Frame M. Information technology challenges of biodiversity and ecosystems informatics. Information systems. 2003, 28 (4), 339–345.

      11. Rana B. K., Insel P. A. G-protein-coupled receptor websites. Trend. Pharmacol. Sci. 2002, 23 (11), 535–536. doi: http://dx.doi. org/10.1016/ S0165-6147(02)02113-2.

      12. Patent 1370136 USSR, МКИ С12N 5/00. The method for dissociation of hippocampal cells. Klyuchko E. М., Tzyndrenko A. Ya. Priority: 31.01.1986; Issued: 30.01.1988, Bull. No 4, 3 p.

      13. Sigworth F. Single channel registration. Moskva: Mir. 1987, 448 p. (In Russian).

      14. Kostyuk P. G. Mechanisms of electrical excitability of nerve cells. Moskva: Nauka. 1981, 208 p. (In Russian).

      15. Klyuchko O. M., Paskivsky A. O., Sheremet D. Y. Computer modeling of some nanoelements for radio and television systems. Electr. Contr. Syst. 2012, 3 (33), 102–107. (In Ukrainian).

      16. Klyuchko O. M., Hayrutdinov R. R. Modeling of electrical signals propagation in neurons and its nanostructures. Electr. Contr. Syst. 2011, 2 (28), 120–124. (In Ukrainian).

      17. Trinus K. F., Klyuchko E. M. Mediators influence on motoneurons retrogradly marked by primulin. Physiol. J. 1984. 30 (6), 730–733. (In Russian).

      18. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Algorithmic and program support for optimization of interval hypoxic training modes selection of pilots. Electr. Contr. Syst. 2017, 2 (52), 85–93.

      19. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Mathematic and program models for investigation of reliability of operator professional activity in “HumanMachine” systems. Electr. Contr. Syst. 2017, 1 (51), 105–113.

      20. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Mathematical model for research of organism restoring for operators of continuously interacted systems. Electr. Contr. Syst. 2016, 3 (49), 100–105.

      21. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Investigation of reliability of operators work at fluctuating temperature conditions. Electr. Contr. Syst. 2016, 2 (48), 132–139.

      22. Plakhotnij S. A., Klyuchko O. M., Krotinova M. V. Information support for automatic industrial environment monitoring systems. Electr. Contr. Syst. 2016, 1 (47), 19–34.

      23. Onopchuk Yu. M., Aralova N. I., Klyuchko O. M., Beloshitsky P. V. Mathematic models and integral estimation of organism systems reliability in extreme conditions. Electronics and control systems. 2015, 4 (46), 109–115.

      24. Onopchuk Yu. M., Aralova N. I., Klyuchko O. M., Beloshitsky P. V. Integral estimations of human reliability and working capacity in sports wrestling. Journal of the Engineering Academy. 2015, V. 3, P. 145–148. (In Russian).

      25. Klyuchko O. M., Shutko V. N., Navrotskyi D. O., Mikolushko A. M. The set of program models for ecological monitoring technical system based on principles of biophysics. Electr. Contr. Syst. 2014, 4 (42), 135–142.

      26. Klyuchko O. M., Sheremet D. Yu. Computer simulation of biological nanogenerator functions. Electr. Contr. Syst. 2014, 2 (40), 103–111.

      27. Klyuchko O. M., Shutko V. N. Computer modeling of auto-oscillating phenomena in neuron complexes. Electr. Contr. Syst. 2014, 1 (39), 127–132.

      28. Klyuchko O. M., Sheremet D. Yu. Computer modeling of biologic voltage-activated nanostructures. Electr. Contr. Syst. 2014, 1 (39), 133–139.

      29. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. M. Radiation damage of organism and its correction in conditions of adaptation to highmountain meteorological factors. Bulletin of NAU. 2010, V. 1, P. 224–231. (In Ukrainian).

      30. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu., Makarenko M. V. Estimation of psycho-physiological functions of a person and operator work in extreme conditions. Bulletin of NAU. 2009, No 3, P. 96–104. (In Ukrainian).

      31. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu., Kolchinska A. Z. Results of research of higher nervous activity problems by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2009, No 2, P. 105–112. (In Ukrainian).

      32. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of structural and functional interdependencies by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2009, No 1, P. 61–67. (In Ukrainian).

      33. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of highlands factors influence on health and longevity by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2008, No 4, P. 108–117. (In Ukrainian).

      34. Onopchuk Yu. M., Klyuchko O. M., Beloshitsky P. V. Development of mathematical models basing on researches of Ukrainian scientists at Elbrus. Bulletin of NAU. 2008, No 3, P. 146–155. (In Ukrainian).

      35. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of adaptation problems by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2008, No 1, P. 102–108. (In Ukrainian).

      36. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of hypoxia problems by Ukrainian scientists in Elbrus region. Bulletin of NAU. 2007, No 3–4, P. 44–50. (In Ukrainian).

      37. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of medical and biological research of Ukrainian scientists at Elbrus. Bulletin of NAU. 2007, No 2, P. 10–16. (In Ukrainian).

      38. Belan P. V, Gerasimenko O. V., Tepikin A. V., Petersen O. H. Localization of Ca++ extrusion sites in pancreatic acinar cells. J. Biol. Chem. 1996, V. 271, P. 7615–7619. https://doi.org/10.1074/jbc.271.13.7615

      39. Belan P., Gardner J., Gerasimenko O. Extracellular Ca++ spikes due to secretory events in salivary gland cells. J. Biol. Chem. 1998, V. 273, P. 4106–4111. https://doi.org/10.1074/jbc.273.7.4106

      40. Jabs R., Pivneva T., Huttmann K. Synaptic transmission onto hyppocampal glial cells with hGFAP promoter activity. J. Biol. Chem. 2005, V. 118, P. 3791–3803.

      41. Gavrilovich M. Spectra image processing and application in biotechnology and pathology. Dissertation for Ph.D. Acta Universitatis Upsaliensis. Upsala. 2011, 63 p.

      42. Perner P., Salvetti O. Advances in Mass Data Analysis of Images and Signals in Medicine, Biotechnology, Chemistry and Food Industry. Third International Conference, Leipzig, (Germany): Springer, 2008, Proceedings. 2008, 173 p.

      43. Baert P., Meesen G., De Schynkel S., Poffijn A., Oostveldt P. V. Simultaneous in situ profiling of DNA lesion endpoints based on image cytometry and a single cell database approach. Micron. 2005, 36 (4), 321330. https://doi.org/10.1016/j.micron.2005.01.005

      44. Berks G., Ghassemi A., von Keyserlingk D. G. Spatial registration of digital brain atlases based on fuzzy set theory. Comp. Med. Imag. Graph. 2001, 25 (1), 1–10. https://doi. org/10.1016/S0895-6111(00)00038-0.

      45. Nowinski W. L., Belov D. The Cerefy Neuroradiology Atlas: a Talairach–Tournoux atlas-based tool for analysis of neuroimages available over the internet. NeuroImage. 2003, 20 (1), 50–57. https://doi.org/10.1016/S1053-8119(03)00252-0

      46. Chaplot S., Patnaik L. M., Jagannathan N. R. Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed. Signal Process. Control. 2006, 1 (1), 86–92. https:// doi.org/10.1016/j. bspc.2006.05.002.

      47. Kovalev V. A., Petrou M., Suckling J. Detection of structural differences between the brains of schizophrenic patients and controls. Psychiatry Research: Neuroimaging. 2003, 124 (3), 177–189. https://doi.org/10.1016/ S0925-4927(03) 00070-2.

      48. Araújo T. Classification of breast cancer histology images using Convolutional Neural Networks. PloS One. 2017, 12 (6), e0177544. https://doi.org/10.1371/journal.pone.0177544

      49. Vecht-Lifshitz S. E., Ison A. P. Biotechnological applications of image analysis: present and future prospects. J. Biotechnol. 1992, 23 (1), 1–18. https://doi.org/10.1016/0168-1656(92)90096-R

      50. Toga A. W., Thompson P. M. The role of image registration in brain mapping. Image Vis. Comput. 2001, 19 (1-2), 3–24. https://doi.org/10.1016/S0262-8856(00)00055-X

      51. Carro S. A., Scharcanski J. A framework for medical visual information exchange on the WEB. Comput. Biol. Med. 2006, V. 4, P. 327–338.

      52. Chakravarty M. M., Bertrand G., Hodge C. P., Sadikot A. F., Collins D. L. The creation of a brain atlas for image guided neurosurgery using serial histological data. NeuroImage. 2006, 30 (2), 359– 376. doi: 10.1016/j.neuroimage.2005. 09.041.

      53. Dikshit A., Wu D., Wu C., Zhao W. An online interactive simulation system for medical imaging education. Comp. Med. Imag. Graph. 2005, 29 (6), 395404. https://doi. org/10.1016/j.compmedimag.2005.02.001.

      54. Singh R., Schwarz N., Taesombut N., Lee D., Jeong B., Renambot L., Lin A. W., West R., Otsuka H., Naito S., Peltier S. T., Martone M. E., Nozaki K., Leigh J., Ellisman M. H. Realtime multi-scale brain data acquisition, assembly, and analysis using an end-to-end. OptIPuter Fut. Gener. Comp. Syst. 2006, 22, 1032–1039.

      55. Stefanescu R., Pennec X., Ayache N. Grid powered nonlinear image registration with locally adaptive regularization. Med. Imag. Anal. 2004. 8 (3), 325–342.

      56. Ma Y., Hof P. R., Grant S. C., Blackband S. J., Bennett R., Slatest L., McGuigan M. D., Benveniste H. A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience. 2005, 135 (4), 12031215. doi: 10.1016/j.neuroscience.2005.07. 014.

      57. Yu-Len Huang. Computer-aided Diagnosis Using Neural Networks and Support Vector Machines for Breast Ultrasonography. J. Med. Ultrasound. 2009, 17 (1), 17–24.

      58. Prachi Damodhar Shahare, Ram Nivas Giri. Comparative Analysis of Artificial Neural Network and Support Vector Machine Classification for Breast Cancer Detection. Int. Res. J. Engineer. Technol. (IRJET). 2015, 2 (9).

      59. Natrajan R., Sailem H., Mardakheh F. K., Garcia M. F., Tape C. G., Dowsett M., Bakal C., Yuan Y. Microenvironmental heterogeneity parallels breast cancer progression: a histology–genomic integration analysis. PLoS medicine. 2016, 13 (2), e1001961. https:// doi.org/10.1371/journal.pmed. 1001961.

      60. Klyuchko O. M. Brain images in information systems for neurosurgery and neurophysiology. Electr. Contr. Syst. 2009, 3 (21), 152–156. (In Ukrainian).

      61. Klyuchko O. M. Using of images’ databases for diagnostics of pathological changes in organism tissues. Electronics and control systems. 2009, 2 (20), 62–68. (In Ukrainian).

      62. Klyuchko O. M. Elements of different level organization of the brain as material for electronic databases with images. Electronics and control systems. 2009, 1 (19), 69–75. (In Ukrainian).

      63. Steimann F. On the representation of roles in object-oriented and conceptual modelling. Data& Knowedge Engineering. 2000, 35 (1), 83–106.

      64. Klyuchko O. M., Managadze Yu. L., Pashkivsky A. O. Program models of 2D neuronal matrix for ecological monitoring and images’ coding. Bulletin of the Engineering Academy. 2013, No 3–4, P. 77–82. (In Ukrainian).

      65. Klyuchko O. M., Piatchanina T. V., Mazur M. G. Combined use of relation databases of images for diagnostics, therapy and prognosis of oncology diseases. “Integrated robototechnic complexes”. Х ІІRTC-2017 Conference Proceedings. P. 275–276. (In Ukrainian).

      66. Shutko V. M, Shutko O. M., Kolganova O. O. Methods and means of compression of information. Kyiv: Nauk. dumka. 2012. 168 p. (In Ukrainian).

      67. Jecheva V., Nikolova E. Some clusteringbased methodology applications to anomaly intrusion detection systems. Int. J. Secur. Appl. 2016, 10 (1), 215–228. http://dx.doi. org/10.14257/ijsia.2016.10.1.20.

      68. Iakovidis D. K., Maroulis D. E., Karkanis S. A. Texture multichannel measurements for cancer precursors’ identification using support vector machines. Measurement. 2004, V. 36, P. 297–313. 2004.09.010 https://doi. org/10.1016/j.measurement.

      69. Nguyen H. Q., Carrieri-Kohlman V., Rankin S. H., Slaughter R., Stulbarg M. S. Internet-based patient education and support interventions: a review of evaluation studies and directions for future research. Comp. Biol. Med. 2004, 34 (2), 95–112. doi: 10.1016/S0010- 4825(03)00046-5.

      70. Jézéquel P., Loussouarn L., Guérin-Charbonnel C., Campion L., Vanier A., Gouraud W., Lasla H., Guette C., Valo I., Verrièle V. Campone M. Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response. Breast Cancer Res. 2015, 17 (1), 43. https:// doi. org/10.1186/s13058-015-0550-y.

      71. Bozhenko V. K. Multivariable analysis of laboratory blood parameters for obtaining diagnostic information in experimental and clinical oncology. The dissertation author’s abstract on scientific degree editions. Dc. Med. Study. Moscow. 2004. (In Russian).

      72. Ko J. H., Ko E. A., Gu W., Lim I., Bang H., Zhou T. Expression profiling of ion channel genes predicts clinical outcome in breast cancer. Mol. Cancer. 2013, 12 (1), 106. https://doi.org/10.1186/1476-4598-12-106

      73. Kawai M., Nakashima A., Kamada S., Kikkawa U. Midostaurin preferentially attenuates proliferation of triple-negative breast cancer cell lines through inhibition of Aurora kinase family. J. Biomed. Sci. 2015, 22 (1), 48. https://doi.org/10.1186/s12929-015-0150-2

      74. Uhr K., Wendy J. C., Prager-van der Smissen, Anouk A. J. Heine, Bahar Ozturk, Marcel Smid, Hinrich W. H. G hlmann, Agnes Jager, John A. Foekens, John W. M. Martens. Understanding drugs in breast cancer through drug sensitivity screening. Springer Plus. 2015, 4 (1), 611. doi: 10.1186/ s40064-015-1406-8.

      75. Onopchuk Yu. M., Biloshitsky P. V., Klyuchko O. M. Development of mathematical models based on the results of researches of Ukrainian scientists at Elbrus. Bulletin of NAU. 2008, No 3, P. 146–155. (In Ukrainian).

      76. Ankur Poudel, Dhruba Bahadur Thapa, Manoj Sapkota. Cluster Analysis of Wheat (Triticum aestivum L.) Genotypes Based Upon Response to Terminal Heat Stress. Int. J. Appl. Sci. Biotechnol. 2017, 5 (2), 188– 193. doi: http://dx.doi.org/10.3126/ijasbt. v5i2.17614.

      77. Zaslavsky L., Ciufo S., Fedorov B., Tatusova T. Clustering analysis of proteins from microbial genomes at multiple levels of resolution. BMC Bioinform. 2016, 17 (8), 276. Published online 2016 Aug 31. https://doi.org/10.1186/s12859-016-1112-8

      78. Zhou J., Richardson A. J., Rudd K. E. EcoGeneRefSeq: EcoGene tools applied to the RefSeq prokaryotic genomes. Bioinformatics. 2013, 29 (15), 1917–1918. Published: 04 June 2013. https://doi.org/10.1093/bioinformatics/btt302

      79. Zhang J., Wu G., Hu X., Li S., Hao S. A Parallel Clustering Algorithm with MPI — MKmeans. J. Comput. 2013, 8 (1), 1017. doi: 10.1109/ PAAP. 2011.17.

      80. Tatusova T., Zaslavsky L., Fedorov B., Haddad D., Vatsan A., Ako-adjei D., Blinkova O., Ghazal H. Protein Clusters. The NCBI Handbook [Internet]. 2nd edition. Available at https:// www.ncbi.nlm.nih.gov/books/ NBK242632.

      81. Anderson J. G. Evaluation in health informat ics: computer simulation. Comp. Biol. Med. 2002, 32 (3), 151–164. https:// doi.org/10.1016/ S0010-4825(02)00012-4.

      82. Aruna P., Puviarasan N., Palaniappan B. An investigation of neuro-fuzzy systems in psychosomatic disorders. Exp. Syst. Appl. 2005, 28 (4), 673–679. https://doi. org/10.1016/j. eswa.2004.12.024.

      83. Bange M. P., Deutscher S. A., Larsen D., Linsley D., Whiteside S. A handheld decision support system to facilitate improved insect pest management in Australian cotton systems. Comp. Electron. Agricult. 2004, 43 (2), 131–147. https:// doi.org/10.1016/j. compag.2003.12.003.

      84. Beaulieu A. From brainbank to database: the informational turn in the study of the brain. Stud. Hist. Phil. Biol. Biomed. Sci. 2004, V. 35, P. 367–390. https://doi.org/10.1016/j. shpsc.2004.03.011.

      85. Horn W. AI in medicine on its way from knowledge-intensive to data-intensive systems. Artif. Intell Med. Elsevier. 2001, 23 (1), 512. https://doi.org/10.1016/ S09333657(01)00072-0.

      86. Brake I. Unifying revisionary taxonomy: insect exemplar groups. Abstr. XV SEL Congr. Berlin (Germany). 2007.

      87. Braxton S. M., Onstad D. W., Dockter D. E., Giordano R., Larsson R., Humber R. A. Descript ion and analysis of two internet-based databases of insect pathogens: EDWIP and VIDIL. J. Invertebr. Pathol. 2003, 83 (3), 185– 195. doi: 10.1016/S0022-2011(03)00089-2.

      88. Breaux A., Cochrane S., Evens J., Martindaled M., Pavlike B., Suera L., Benner D. Wetland ecological and compliance assessments in the San Francisco Bay Region, California, USA. J. Environm. Manag. 2005, 74 (3), 217–237. https://doi.org/10.1016/j.jenvman.2004.08.017

      89. Budura A., Cudré-Mauroux P., Aberer K. From bioinformatic web portals to semantically integrated Data Grid networks. Fut. Gener. Comp. Syst. 2007, 23 (3), 281–522. doi: 10.1016/j.jenvman. 2004.08.017.

      90. Burns G., Stephan K. E., Ludäscher B., Gupta A., Kötter R. Towards a federated neuroscientific knowledge management system using brain atlases. Neurocomputing. 2001, V. 3840, P. 1633–1641. https://doi.org/10.1016/ S0925-2312(01)00520-3.

      91. Butenko S., Wilhelm W. E. Clique-detection models in computational biochemistry and genomics. Eur. J. Oper. Res. 2006, 173 (1), 117. https://doi.org/10.1016/j. ejor.2005.05.026.

      92. Carro S. A., Scharcanski J. Framework for medical visual information exchange on the WEB. Comp. Biol. Med. 2006, 36 (4), 327–338. doi: 10.1016/ j.compbiomed.2004.10.004.

      93. Chau M., Huang Z., Qin J., Zhou Y., Chen H. Building a scientific knowledge web portal: The NanoPort experience. Decis. Support Syst. 2006. https://doi.org/10.1016/j. dss.2006.01.004.

      94. Chen M., Hofestädt R. A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. J. Biomed. Inform. 2006, 39 (2), 147–159. https://doi. org/10.1016/j.jbi.2005. 05.005.

      95. Chli M., De Wilde P. Internet search: Subdivision-based interactive query expansion and the soft semantic web. Appl. Soft Comp. 2006. https://doi.org/10.1016/j. asoc.2005.11.003.

      96. Despont-Gros C., Mueller H., Lovis C. Evaluating user interactions with clinical information systems: A model based on human– computer interaction models. J. Biomed. Inform. 2005, 38 (3), 244–255. https://doi. org/10.1016/ j.jbi.2004.12.004.

      97. Marios D., Dikaiakos M. D. Intermediary infrastructures for the World Wide Web. Comp. Networks. 2004, V. 45, P. 421–447. https:// doi.org/ 10.1016/j. comnet.2004.02.008.

      98. Dimitrov S. D., Mekenyan O. G, Sinks G. D., Schultz T. W. Global modeling of narcotic chemicals: ciliate and fish toxicity. J. Mol. Struc.: Theochem. 2003, 622 (12), 63–70. https://doi.org/10.1016/S0166-1280(02)00618-8

      99. Dong Y., Zhuang Y., Chen K., Tai X. A hierarchical clustering algorithm based on fuzzy graph connectedness. Fuzzy Sets. Syst. 2006, V. 157, P. 1760–1774. https://doi.org/10.1016/j.fss.2006.01.001

      100. Duan Y., Edwards J. S., Xu M. X. Web-based expert systems: benefits and challenges. Inf. Manag. 2005, 42 (6), 799811. https://doi.org/10.1016/j.im. 2004.08.005.

      101. Essen van D. C. Windows on the brain: the emerging role of atlases and databases in neuroscience. Curr. Opin. Neurobiol. 2002, 12 (5), 574–579. https://doi.org/10.1016/ S0959-4388(02)00361-6.

      102. Fellbaum C., Hahn U., Smith B. Towards new information resources for public health From Word Net to Medical Word Net. J. Biomed. Inform. 2006, 39 (3), 321–332. https://doi.org/10.1016/j.jbi.2005.09.004

      103. Ferraris M., Frixione P., Squarcia S. Network oriented radiological and medical archive. Comp. Physics Commun. 2001, V. 140, P. 226–232. https://doi.org/10.1016/ S0010-4655(01)00273-9.

      104. Flower D. R., Attwood T. K. Integrative bioinformatics for functional genome annotation: trawling for G protein-coupled receptors. Reviews 55 Semin. Cell. Dev. Biol. 2004, 15 (6), 693–701. https://doi.org/10.1016/j.semcdb.2004.09.008

      105. Fink E., Kokku P. K., Nikiforou S., Hall L. O., Goldgof D. B., Krischer J. P. Selection of patients for clinical trials: an interactive webbased system. Art. Intell. Med. 2004, 31 (3), 241–254. https://doi.org/10.1016/j.artmed.2004.01.017

      106. Fitzpatrick M. J., Ben-Shahar Y., Smid H. M., Vet L. E., Robinson G. E., Sokolowski M. B. Candidate genes for behavioural ecology. Trend Ecol. Evol. 2005, 20 (2), 96–104. https://doi.org/10.1016/j.tree.2004.11.017

      107. Fox J., Alabassi A., Patkar V., Rose T., Black E. An ontological approach to modelling tasks and goals. Comp. Biol. Med. 2006, V. 36, P. 837–856. https://doi.org/10.1016/j. compbiomed.2005.04.011.

      108. Fu Zetian, Xu Feng, Zhou Yun, Shuan X. Z. Pig-vet: a web-based expert system for pig disease diagnosis. Fuzzy Sets. Syst. 2006. https://doi. org/10.1016/j.eswa.2005.01.011.

      109. Gaulton A., Attwood T. K. Bioinformatics approaches for the classification of G-protein-coupled receptors. Curr. Opin. Pharmacol. 2003, 3 (2), 114–120. https://doi.org/10.1016/S1471-4892(03)00005-5

      110. Palla K., Ghahramani Z., Knowles D. A. A nonparametric variable clustering model. Adv. Neural. Inform. Proc. Syst. 2012, 2987–2995.

      111. Curtis C. L., Shah S. P., Chin S. F., Turashvili G., Rueda O. M., Dunning M. J., Speed D., Lynch A. G., Samarajiwa S., Yuan Y., Gräf S., Ha G., Haffari G., Bashashati A., Russell R., McKinney S.; METABRIC Group, Langerød A., Green A., Provenzano E., Wishart G., Pinder S., Watson P., Markowetz F., Murphy L., Ellis I., Purushotham A., Børresen-Dale A. L., Brenton J. D., Tavaré S., Caldas C., Aparicio S. The genomic and transc ript om ic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012, 486 (7403), 346–352. https://doi.org/10.1038/nature10983

      112. Proceedings of the second EuroLOOP Workshop, Amsterdam, 27–30 March 1995.

      113. Graham C. H., Ferrier S., Huettman F., Moritz C., Peterson A. T. New developments in museum-based informatics and applications in biodiversity analysis. Trend. Ecol. Evol. 2004, 19 (9), 497–503. https://doi.org/10.1016/ j.tree.2004.07.006.

      114. Anokhin B., Hemmrich G. Zoology www guide. Zoology. 2005, V. 108, Is. 4, P. 673–679.

      115. Hirano S., Sun X., Tsumoto S. Comparison of clustering methods for clinical databases. Inform. Sci. 2004, 159 (34), 155–165. https://doi.org/10.1016/j. ins.2003.03.011.

      116. Hong Yu., Hatzivassiloglou V., Rzhetsky A., Wilbur W. J. Automatically identifying gene/ protein terms in MEDLINE abstracts. J. Biomed. Inform. 2002, 35 (56), 322– 330. https://doi.org/10.1016/S1532-0464(03)00032-7

      117. Bedathur S. J., Haritsa J. R., Sen U. S. The building of BODHI, a bio-diversity database system. Inform. Syst. 2003, 28 (4), 347367. https://doi.org/10.1016/S0306-4379(02)00073-X

      118. Hsi-Chieh Lee, Szu-Wei Huang, Li E. Y. Mining protein–protein interaction information on the internet. Exp. Syst. Appl. Elsevier. 2006, 30 (1), 142–148. https://doi. org/10.1016/j.eswa.2005.09.083.

      119. Young R. Genetic toxicology: web–resources. Toxicology. 2002, 173 (1–2), P. 103–121. https://doi.org/10.1016/S0300-483X(02)00026-4

      120. Johnson S. B., Friedman R. Bridging the gap between biological and clinical informatics in a graduate training program. J. Biomed. Inform. 2007, 40 (1), 59–66. Epub. 2006 Mar 15. https://doi.org/10.1016/j.jbi.2006.02.011

      121. Kaiser M., Hilgetag C. C. Modelling the development of cortical systems netw orks. Neurocomputing. 2004, V. 5860, P. 297–302. https://doi.org/10.1016/j.neucom.2004.01.059

      122. Kane M. D., Brewer J. L. An information technology emphasis in biomedical informatics education. J. Biomed. Inform. 2007, 40 (1), 67–72. https://doi.org/10.1016/j.jbi.2006.02.006

      123. Kannathal N., Acharya U. R., Lim C. M., Sadasivan P. K. Characterization of EEG. A comparative study. Comp. Meth. Progr. Biomed. 2005, 80 (1), 17–23. https://doi. org/10.1016/j.cmpb.2005.06.005.

      124. Koh W., McCormick B. H. Brain microstructure database system: an exoskeleton to 3D reconstruction and modelling. Neurocomputing. 2002, V. 4446, P. 1099–1105. https://doi.org/10.1016/ S0925-2312(02)00426-5.

      125. Koh W., McCormick B. H. Registration of a 3D mouse brain atlas with brain microstructure data. Neurocomputing. 2003, V. 5254, P. 307–312. https://doi. org/10.1016/ S0925-2312(02)00793-2.

      126. Kulish V., Sourin A., Sourina O. Human electro encephalograms seen as fractal time series: Mathematical analysis and visualization. Comp. Biol. Med. 2006, 36 (3), 291–302. https://doi.org/10.1016/j.compbiomed.2004.12.003

      127. Lubitz von D., Wickramasinghe N. Networkcentric healthcare and bioinform at ics: Unified operations within three domains of knowledge. Exp. Syst. Appl. 2006, 30 (1), 11–23. https://doi. org/10.1016/j. eswa.2005.09.069.

      128. Martin-Sanchez F., Iakovidis I., Norager S., Maojo V., de Groen P., Van der Lei J., Jones T., Abraham-Fuchs K., Apweiler R., Babic A., Baud R., Breton V., Cinquin P., Doupi P., Dugas M., Eils R., Engelbrecht R., Ghazal P., Jehenson P., Kulikowski C., Lampe K., De Moor G., Orphanoudakis S., Rossing N., Sarachan B., Sousa A., Spekowius G., Thireos G., Zahlmann G., Zvárová J., Hermosilla I., Vicente F. J. Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care. J. Biomed. Inform. 2004, 37 (1), 30–42. https://doi.org/10.1016/j.jbi.2003.09.003.

      129. Masseroli M., Visconti A., Bano S. G. Pinciroli F. He@lthCo-op: a web-based system to support distributed healthcare co-operative work. Comp. Biol. Med. 2006, 36 (2), 109–127. doi: 10.1016/j. compbiomed.2004.09.005.

      130. Moon S., Byun Y., Han K. FSDB: A frameshift signal database. Comp. Biol. Chem. 2007, 31 (4), 298–302. https://doi.org/10.1016/j.compbiolchem.2007.05.004