Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2018 № 1 MICROBIAL SYNTHESIS OF PHYTOHORMONES T. P. Pirog, G. O. Iutynska, N. O. Leonova, K. A. Beregova, T. A. Shevchuk
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

"Biotechnologia Acta" V. 11, No 1, 2018
https://doi.org/10.15407/biotech11.01.005
Р. 5-24, Bibliography 121, English
Universal Decimal Classification: 579.64:581.1

MICROBIAL SYNTHESIS OF PHYTOHORMONES

T. P. Pirog 1, 2, G. O. Iutynska 1, N. O. Leonova 1, K. A. Beregova 2, T. A. Shevchuk 1

1 Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
2 National University of Food Technologies, Kyiv, Ukraine

The aim of the review was to   analyze    current literature data and the results of own studies on the synthesis of auxins, cytokinins, and gibberellins by plant-associated microorganisms (living in rhizosphere, endophytic, nitrogen-fixing, and phytopathogenic), and by those not involved in symbiotic interactions. Many microorganisms can generate phytohormones, and microbial synthesis of indole-3-acetic acid can be enhanced which can be used in producing it instead of extracting it from plants or by chemical synthesis. Recent progress in intensifying the synthesis of gibberellic acid in deep and solid-phase producer cultivation allows substantially reducing the prime cost of biotechnological production of that phytohormone. The ability of microorganisms to simultaneously synthesize phytohormones and other biologically active compounds with antimicrobial, nematocidal, and other various effects enables creating complex polyfunctional microbial preparations with various biological properties for use in crop production to stimulate plant growth and pest control.

Key words: phytohormones, microbial synthesis, complex microbial preparations

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018

  • References
    • 1. Bioregulation of microbial-plant systems (Ed. G.O. Iutynska, S.P. Ponomarenko). Kyiv: Nichlava, 2010. 464 p. (In Russian).

      2. Singh R., Kumar M., Mittal A., Mehta P. K. Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech. 2017, 7 (1), 15. https://doi.org/10.1007/s13205-016-0586-4

      3. Lale G., Jogdand V. V., Gadre R. V. Morphological mutants of Gibberella fujikuroi for enhanced production of gibberellic acid. J. Appl. Microbiol. 2006, 100 (1), 65–72.

      4. Rodrigues C., Vandenberghe L.P.S., Teodoro J., Fraron Oss J., Pandey A., Soccol C. R. A new alternative to produce gibberellic acid by solid state fermentation. Braz. Arch. Biol. Technol. 2009, V. 52 (special), P. 181–188.

      5. Rangaswamy V. Improved production ofgibberellic acid by Fusarium moniliforme.J. Microbiol. Res. 2012, 2 (3), 51–55. doi:10.5923/j.microbiology. 20120203.02.

      6. Shi T.Q., Peng H., Zeng S.Y., Ji R.Y., Shi K.,Huang H., Ji X.J. Microbial production ofplant hormones: Opportunities and challenges.Bioengineered. 2017, 8(2), 124–128. https://doi.org/10.1080/21655979.2016.1212138

      7. Ludwig-Müller J. Plants and endophytes: equalpartners in secondary metabolite production?Biotechnol. Lett. 2015, 37(7), 1325–1334. https://doi.org/10.1007/s10529-015-1814-4

      8. Boivin S., Fonouni-Farde C., Frugier F. How auxinand cytokinin phytohormones modulate rootmicrobe interactions. Front. Plant. Sci. 2016, V. 7, P. 1240. https://doi.org/10.3389/fpls.2016.01240

      9. Radhakrishnan R., Hashem A., Abd Allah E.F.Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol. 2017, V. 8, P. 667. https://doi.org/10.3389/fphys.2017.00667

      10. Vandeputte O., Oden S., Mol A., Vereecke D., Goethals K., El Jaziri M., Prinsen E. Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Appl. Environ. Microbiol. 2005, 71 (3), 1169–1177.

      11. Ahmed A., Hasnain S. Auxins as one of thefactors of plant growth improvement byplant growth promoting rhizobacteria. Pol. J. Microbiol. 2014, 63 (3), 261–266.

      12. Singh S. A review on possible elicitormolecules of cyanobacteria: their role inimproving plant growth and providingtolerance against biotic or abiotic stress. J.Appl. Microbiol. 2014, 117(5), 1221–1244. https://doi.org/10.1111/jam.12612

      13. Dourado M. N., Camargo Neves A.A.,Santos D. S., Araújo W. L. Biotechnological and agronomic potential of endophytic pinkpigmented methylotrophic Methylobacterium spp. Biomed. Res. Int. 2015, 2015:909016. https://doi.org/10.1155/2015/909016

      14. Lu Y., Xu J. Phytohormones in microalgae: a new opportunity for microalgal bio tech nology? Trends Plant. Sci. 2015, 20 (5), 273–282.

      15. Rashad F. M., Fathy H. M., El-Zayat A. S., Elghonaimy A. M. Isolation and characte ri zation of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiol. Res. 2015, V. 175, P. 34–47. https://doi.org/10.1016/j.micres.2015.03.002

      16. Samanovic M. I., Darwin K. H. Cytokinins beyond plants: synthesis by Mycobacterium Reviews 19 tuberculosis. Microb. Cell. 2015, 2 (5), 168–170. https://doi.org/10.15698/mic2015.05.203

      17. Liu Y. Y., Chen H. W., Chou J. Y. Variation in indole-3-acetic acid production by wild Saccharomyces cerevisiae and S. paradoxus strains from diverse ecological sources and its effect on growth. PLoS One. 2016, 11 (8), e0160524. https://doi.org/10.1371/journal.pone.0160524

      18. Großkinsky D. K., Tafner R., Moreno M. V., Stenglein S. A., García de Salamone I. E., Nelson L. M., Novák O., Strnad M., van der Graaff E., Roitsch T. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep. 2016, V. 6, P. 23310. https://doi.org/10.1038/srep23310

      19. Boudjeko T., Tchinda R. A., Zitouni M., Nana J. A., Lerat S., Beaulieu C. Streptomyces cameroonensis sp. nov., a geldanamycin producer that promotes Theobroma cacao growth. Microbes Environ. 2017, 32 (1), 24–31. https://doi.org/10.1264/jsme2.ME16095

      20. Hramtsova E. A., Zhardetskii S. S., Mak simova N. P. Synthesis of indole-3-acetic acid by rhizosphere bacteria Pseudomonas mendocina. Characterization of regulatory mutants. Newsletter of Bela rusian State University. Ser. 2. 2006, V. 2, P. 69–73. http://elib.bsu. by/bitstream/123456789/23868/2/69-73. pdf. (In Russian).

      21. Nutaratat P., Amsri W., Srisuk N., Arunrattiyakorn P., Limtong S. Indole-3- acetic acid production by newly isolated red yeast Rhodosporidium paludigenum. J. Gen. Appl. Microbiol. 2015, 61(1), 1–9. https://doi.org/10.2323/jgam.61.1

      22. Dimova S.B. Phytohormones – microbial waste products. Methods of their determination. Agricultural microbiology. 2013, V. 18, P. 159–185. (In Ukraininan).

      23. Streletskii R.A. Ecological and taxonomic aspects of the distribution of phytohormonal activity among yeast. Dissertation for the degree of Candidate of Biological Sciences in speciality 03.02.03 (microbiology) and 03.02.08 (ecology). Moskva: 2017, 132 с. (In Russian).

      24. Gopalakrishnan S., Sathya A., Vijayabharathi R., Varshney R. K., Gowda C. L., Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech. 2015, 5 (4), 355–377.https://doi.org/10.1007/s13205-014-0241-x

      25. Liu Y., Shi Z., Yao L., Yue H., Li H., Li C. Effect of IAA produced by Klebsiella oxytoca Rs-5 on cotton growth under salt stress. J. Gen. Appl. Microbiol. 2013, 59 (1), 59–65.

      26. Kisiala A., Laffont C., Emery R. J., Frugier F. Bioactive cytokinins are selectively secreted by Sinorhizobium meliloti nodulating and nonnodulating strains. Mol. Plant Microbe Interact. 2013, 26 (10), 1225–1231. https://doi.org/10.1094/MPMI-02-13-0054-R

      27. Brader G., Compant S., Mitter B., Trognitz F., Sessitsch A. Metabolic potential of endophy tic bacteria. Curr. Opin. Biotechnol. 2014, V. 27, P. 30–37. https://doi.org/10.1016/j.copbio.2013.09.012

      28. Contreras-Cornejo H.A., Macías-Rodríguez L., del-Val E., Larsen J. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol. Ecol. 2016, 92(4), fiw036.https://doi.org/10.1093/femsec/fiw036

      29. Grady E. N., MacDonald J., Liu L., Richman A., Yuan Z. C. Current knowledge and perspectives of Paenibacillus: a review. Microb. Cell Fact. 2016, 15(1), 203. https://doi.org/10.1186/s12934-016-0603-7

      30. Pertry I., Václavíková K., Gemrotová M., Spíchal L., Galuszka P., Depuydt S., Tem merman W., Stes E., De Keyser A., Riefler M., Biondi S., Novák O., Schmülling T., Strnad M., Tarkowski P., Holsters M., Vereecke D. Rhodococcus fascians impacts plant development through the dynamic fasmediated production of a cytokinin mix. Mol. Plant Microbe Interact. 2010, 23(9), 1164– 1174. https://doi.org/10.1094/MPMI-23-9-1164

      31. Kazan K., Lyons R. Intervention of phytohormone pathways by pathogen effectors. Plant Cell. 2014, 26(6), 2285–2309.

      32. Nafisi M., Fimognari L., Sakuragi Y. Interplays between the cell wall and phytohormones in interaction between plants and necrotrophic pathogens. Phytochemistry. 2015, V. 112, P. 63–71. doi: 10.1016/j. phytochem.2014.11.008.

      33. Fu S. F., Wei J. Y., Chen H. W., Liu Y. Y., Lu H. Y., Chou J. Y. Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms. Plant Signal. Behav. 2015, 10 (8), e1048052. https://doi.org/10.1080/15592324.2015.1048052

      34. Ma K. W., Ma W. Phytohormone pathways as targets of pathogens to facilitate infection. Plant Mol. Biol. 2016, 91(6), 713–725. https://doi.org/10.1007/s11103-016-0452-0

      35. Chanclud E., Kisiala A., Emery N. R., Chalvon V., Ducasse A., Romiti-Michel C., Gravot A., Kroj T., Morel J. B. Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Pathog. 2016, 12 (2), e1005457. https://doi.org/10.1371/journal.ppat.1005457

      36. Trdá L., Barešová M., Šašek V., Nováková M., Zahajská L., Dobrev P. I., Motyka V., Burketová L. Cytokinin metabolism of pathogenic fungus Leptosphaeria maculans involves isopentenyltransferase, adenosine kinase and cytokinin oxidase/dehydrogenase. Front. Microbiol. 2017, V. 8, P. 1374. doi: 10.3389/ fmicb.2017.01374.

      37. Glick B. R. Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo). 2012, 2012:963401. https://doi.org/10.6064/2012/963401

      38. Santoyo G., Moreno-Hagelsieb G., Orozco- Mosqueda Mdel C., Glick B. R. Plant growthpromoting bacterial endophytes. Microbiol. Res. 2016, V. 183, P. 92–99. doi: 10.1016/j. micres.2015.11.008.

      39. Tsavkelova E. A., Klimova S. Y., Cherdyntseva T. A., Netrusov A. I. Microbial producers of plant growth stimulators and their practical use: a review. Appl. Biochem. Microbiol. 2006, 42 (2), 117–126. doi: org/10.1134/ S0003683806020013.

      40. Patten C. L., Glick B. R. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 1996, V. 42, P. 207–220.

      41. Vejan P., Abdullah R., Khadiran T., Ismail S., Nasrulhaq Boyce A. Role of plant frowth promoting rhizobacteria in agri cultural sustainability — a review. Molecules. 2016, 21(5), E573. https://doi.org/10.3390/molecules21050573

      42. Majeed A., Abbasi M. K., Hameed S., Imran A., Rahim N. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front. Microbiol. 2015, V. 6, P. 198. https://doi.org/10.3389/fmicb.2015.00198

      43. Vessey K. J. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 2003, V. 255, P. 571–586.

      44. Gray E. J., Smith D. L. Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol. Biochem. 2005, V. 37, 395–412.

      45. Prinsen E., Chauvaux N., Schmidt J., John M., Wieneke U., De Greef J., Schell J., Van Onckelen H. Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. FEBS Lett. 1991, 282(1), 53–55.

      46. Shao J., Li S., Zhang N., Cui X., Zhou X., Zhang G., Shen Q., Zhang R. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microb. Cell Fact. 2015, V. 14, P. 130. https://doi.org/10.1186/s12934-015-0323-4

      47. Dutta J., Handique P.J., Thakur D. Assessment of culturable tea rhizobacteria isolated from tea estates of Assam, India for growth promotion in commercial tea cultivars. Front. Microbiol. 2015, V. 6, P. 1252. https://doi.org/10.3389/fmicb.2015.01252

      48. Giassi V., Kiritani C., Kupper K. C. Bacteria as growth-promoting agents for citrus rootstocks. Microbiol Res. 2016, V. 190, P. 46–54. https://doi.org/10.1016/j.micres.2015.12.006

      49. Liu Y., Chen L., Zhang N., Li Z., Zhang G., Xu Y., Shen Q., Zhang R. Plant-microbe communication enhances auxin biosynthesis by a root-associated bacterium, Bacillus amyloliquefaciens SQR9. Mol. Plant Microbe Interact. 2016, 29(4), 324–330. doi:10.1094/ MPMI-10-15-0239-R.

      50. Egamberdieva D. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol. Plant. 2009, 31(4), 861–864.

      51. Sachdev D. P., Chaudhari H. G., Kasture V. M., Dhavale D. D., Chopade B. A. Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian J. Exp. Biol. 2009, 47 (12), 993–1000.

      52. Celloto V. R., Oliveira A. J., Gonçalves J. E., Watanabe C. S., Matioli G., Gonçalves R. A. Biosynthesis of indole-3-acetic acid by new Klebsiella oxytoca free and immobilized cells on inorganic matrices. The Sci. World J. 2012, V. 2012, P. 495970. https://doi.org/10.1100/2012/495970

      53. Shokri D., Emtiazi G. Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design. Curr. Microbiol. 2010, 61(3), 217–225. https://doi.org/10.1007/s00284-010-9600-y

      54. Leonova N. O., Dankevych L. A., Dragovoz I. V., Patykа V. F., Iutynska G. O. Synthesis of extracellular phytohormones-stimulators by nodule bacteria and bacteria phytopathogenic for soybean. Reports NAAS Ukraine. 2013, V. 3, P. 165–171. (In Ukrainian).

      55. Kielak A. M., Cipriano M. A., Kuramae E. E. Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch. Microbiol. 2016, 198 (10), 987–993. https://doi.org/10.1007/s00203-016-1260-2

      56. Khan A. L., Halo B.A., Elyassi A., Ali S., Al- Hoshi K., Hussian J., Al-Harrasi A., Lee I. J. Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electr. J. Biotechnol. 2016, V. 21, P. 58–64.

      57. Weselowski B., Nathoo N., Eastman A. W., MacDonald J., Yuan Z. C. Isolation, iden ti fication and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol. 2016, 16 (1), 244. doi: 10.1186/ s12866-016-0860-y.

      58. Palaniyandi S. A., Yang S. H., Zhang L., Suh J. W. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 2013, 97 (22), 9621– 9636. https://doi.org/10.1007/s00253-013-5206-1

      59. Kaur T., Manhas R. K. Antifungal, insecticidal, and plant growth promoting potential of Streptomyces hydrogenans DH16. J. Basic Microbiol. 2014, 54 (11), 1175–1185. https://doi.org/10.1002/jobm.201300086

      60. Hamedi J., Mohammadipanah F. Biotech nological application and taxonomical distribution of plant growth promoting actinobacteria. J. Ind. Microbiol. Biotechnol. Reviews 21 2015, 42(2), 157-171. doi:10.1007/s10295- 014-1537-x.

      61. Golinska P., Wypij M., Agarkar G., Rathod D., Dahm H., Rai M. Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek. 2015, 108 (2), 267–289. https://doi.org/10.1007/s10482-015-0502-7

      62. Andreolli M., Lampis S., Zapparoli G., Angelini E., Vallini G. Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control. Microbiol. Res. 2016, V. 183, P. 42–52. doi: 10.1016/j. micres.2015.11.009.

      63. Viaene T., Langendries S., Beirinckx S., Maes M., Goormachtig S. Streptomyces as a plant’s best friend? FEMS Microbiol. Ecol. 2016, 92 (8). https://doi.org/10.1093/femsec/fiw119

      64. Tchinda R. A., Boudjeko T., Simao-Beaunoir A. M., Lerat S., Tsala É., Monga E., Beaulieu C. Morphological, physiological, and taxonomic characterization of actinobacterial Isolates living as endophytes of cacao pods and cacao seeds. Microbes Environ. 2016, 31 (1), 56–62. https://doi.org/10.1264/jsme2.ME15146

      65. Boudjeko T., Tchinda R. A., Zitouni M., Nana J. A., Lerat S., Beaulieu C. Streptomyces cameroonensis sp. nov., a geldanamycin producer that promotes Theobroma cacao growth. Microbes Environ. 2017, 32 (1), 24–31. https://doi.org/10.1264/jsme2.ME16095

      66. Matsumoto A., Takahashi Y. Endophytic actinomycetes: promising source of novel bioactive compounds. J. Antibiot. (Tokyo). 2017, 70 (5), 514–519. doi: 10.1038/ ja.2017.20.

      67. El-Sayed W. S., Akhkha A., El-Naggar M. Y., Elbadry M. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front. Microbiol. 2014, V. 5, P. 651. https://doi.org/10.3389/fmicb.2014.00651

      68. Ali S., Hameed S., Imran A., Iqbal M., Lazarovits G. Genetic, physiological and biochemical characterization of Bacillus sp. strain RMB7 exhibiting plant growth promoting and broad spectrum antifungal activities. Microb. Cell Fact. 2014, V. 13, P. 144. https://doi.org/10.1186/s12934-014-0144-x

      69. Dutta J., Thakur D. Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling, India. PLoS One. 2017, 12 (8), e0182302. https://doi.org/10.1371/journal.pone.0182302

      70. Passari A. K., Mishra V. K., Singh G., Singh P., Kumar B., Gupta V., Sharma R. K., Saikia R., Donovan A. O., Singh B. Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci Rep. 2017, 7 (1). https://doi.org/10.1038/s41598-017-12235-4

      71. Srividya S., Adarshana T., Deepika V. B., Kajingailu G., Nilanjan D. Streptomyces sp. 9p as effective biocontrol against chilli soilborne fungal phytopathogens. Eur. J. Exp. Biol. 2012, 2 (1), 163–173.

      72. Palaniyandi S. A., Yang S. H., Zhang L., Suh J. W. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 2013, 97 (22), 9621–9636. https://doi.org/10.1007/s00253-013-5206-1

      73. Law J. W., Ser H. L., Khan T. M., Chuah L. H., Pusparajah P., Chan K. G., Goh B. H., Lee L. The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front. Microbiol. 2017, V. 8, P. 3. https://doi.org/10.3389/fmicb.2017.00003

      74. Sutthinan K., Akira Y., John F. P., Saisamorn L. Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. Eur. Asia J. BioSci. 2010, 4, 23–32.

      75. Biliavska L. A., Kozyritska V. E., Kolomiets Y. V., Babich A. G., Iutynska G. O. Phytoprotective and growth-regulatory properties of bioformulations on the base of soil streptomycetes metabolites. Reports NAAS Ukraine. 2015, V. 1, P. 131–137 (In Ukrainian).

      76. Biliavska L. A., Efimenko T. A., Efremenkova O. V., Koziritska V. Ye., Iutynska G. A. Identification and antagonistic properties of the soil streptomycete Streptomyces sp. 100. Mikrobiol. Zh. 2016, 78 (2), 27–38. (In Russian).

      77. Iutynska G. O., Biliavska L. O., Kozyritska V. Ye. Development strategy for the new environmentally friendly multifunctional bioformulations based on soil streptomycetes. Mikrobiol. Zh. 2017, 79 (1), 22–33.

      78. Bilkay I. S., Karakoç Ş., Aksöz N. Indole-3- acetic acid and gibberellic acid production in Aspergillus niger. Turk. J. Biol. 2010, V. 34, P. 313–318. doi: 10.3906/biy-0812-15.

      79. Shimada A., Takeuchi S., Nakajima A., Tanaka S., Kawano T., Kimura Y. Phytotoxicity of indole-3-acetic acid produced by the fungus, Pythium aphanidermatum. Biosci. Biotechnol. Biochem. 2000, 64 (1), 187–189.

      80. Reineke G., Heinze B., Schirawski J., Buettner H., Kahmann R., Basse C. W. Indole-3- acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol. Plant. Pathol. 2008, 9 (3), 339–355. doi: 10.1111/j.1364- 3703.2008.00470.x.

      81. Nassar A. H., El-Tarabily K. A., Sivasithamparam K. Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol. Fertil. Soils. 2005, 42 (2), 97–108.

      82. El-Tarabily K. A., Sivasithamparam K. Potential of yeasts as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Mycoscience. 2006, 47 (1), 25–35.

      83. Xin G., Glawe D., Doty S. L. Characterization of three endophytic, indole-3-acetic acidproducing yeasts occurring in Populus trees. Mycol. Res. 2009, 113 (9), 973–980.

      84. Limtong S., Koowadjanakul N. Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World J. Microbiol. Biotechnol. 2012, 28 (12), 3323–3335. https://doi.org/10.1007/s11274-012-1144-9

      85. Limtong S., Kaewwichian R., Yongmanitchai W., Kawasaki H. Diversity of culturable yeasts in phylloplane of sugarcane in Thailand and their capability to produce indole-3-acetic acid. World J. Microbiol. Biotechnol. 2014, 30 (6), 1785–1796. https://doi.org/10.1007/s11274-014-1602-7

      86. Nutaratat P., Srisuk N., Arunrattiyakorn P., Limtong S. Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol. 2014, 118 (8), 683–694. doi: 10.1016/j.funbio. 2014.04.010.

      87. Apine O. A., Jadhav J. P. Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J. Appl. Microbiol. 2011, 110 (5), 1235–1244. https://doi.org/10.1111/j.1365-2672.2011.04976.x

      88. Phillips D. A., Torrey J. G. Studies on cytokinin production by Rhizobium. Plant Physiol. 1972, 49 (1), 11–15.

      89. Podlešáková K., Fardoux J., Patrel D., Bonal di K., Novák O., Strnad M., Giraud E., Spíchal L., Nouwen N. Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic Bradyrhizobia and Aeschynomene legumes. Mol. Plant Microbe Interact. 2013, 26 (10), 1232–1238. https://doi.org/10.1094/MPMI-03-13-0076-R

      90. Van Zeijl A., Op den Camp R. H., Deinum E. E., Charnikhova T., Franssen H., Op den Camp H. J., Bouwmeester H., Kohlen W., Bisseling T., Geurts R. Rhizobium lipo-chitooligosaccharide signaling triggers accumulation of cytokinins in Medicago truncatula roots. Mol. Plant. 2015, 8 (8), 1213–1226. doi: 10.1016/j. molp.2015.03.010.

      91. Hussain A., Hasnain S. Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. Afr. J. Microbiol. Res. 2009, 3 (11), 704–712.

      92. Dragovoz I. V., Leonova N. O., Lapa S. V., Piskova E. V., Kryuchkova L. A., Avdeeva L. V. Synthesis of extracellular phytohormons by Bacillus straind isolated from different ecological sources. Mikrobiol. Zh. 2013, 75 (3), 41–45. (In Ukrainian).

      93. Asari S., Tarkowská D., Rolčík J., Novák O., Palmero D. V., Bejai S, Meijer J. Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCM B-5113 using Arabidopsis thaliana as host plant. Planta. 2017, 245 (1), 15–30. doi: 10.1007/ s00425-016-2580-9.

      94. Pallai R., Hynes R. K., Verma B., Nelson L. M. Phytohormone production and colonization of canola (Brassica napus L.) roots by Pseudomonas fluorescens 6-8 under gnotobiotic conditions. Can. J. Microbiol. 2012, 58 (2), 170–178. https://doi.org/10.1139/w11-120

      95. Jiang C. J., Shimono M., Sugano S., Kojima M., Liu X., Inoue H., Sakakibara H., Takatsuji H. Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol. Plant Microbe Interact. 2013, 26 (3), 287–96. doi:10.1094/MPMI-06-12- 0152-R.

      96. Bruce S. A., Saville B. J., Emery R. J. N. Ustilago maydis produces cytokinins and abscisic acid for potential regulation of tumor formation in maize. J. Plant Growth Regul. 2011, V. 30, P. 51–63. doi: 10.1007/ s00344-010-9166-8.

      97. Hinsch J., Vrabka J., Oeser B., Novák O., Galuszka P., Tudzynski P. De novo biosynthesis of cytokinins in the biotrophic fungus Claviceps purpurea. Environ. Microbiol. 2015, V. 17, P. 2935–2951. https://doi.org/10.1111/1462-2920.12838

      98. Behr M., Motyka V., Weihmann F., Malbeck J., Deising H. B., Wirsel S. G. Remodeling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves. Mol. Plant Microbe Interact. 2012, V. 25, P. 1073–1082. doi: 10.1094/MPMI-01-12- 0012-R.

      99. Maruyama A., Maeda M., Simidu U. Occurrence of plant hormone (cytokinin) producing bacteria in the sea. J. Аppl. Microbiol. 1986, 61 (6), 569–574.

      100. Schäfer M., Brütting C., Baldwin I.T., Kallenbach M. High-throughput quantification of more than 100 primary- and secondarymetabolites, and phytohormones by a single solid-phase extraction based sample preparation with analysis by UHPLC-HESIMS/ MS. Plant Meth. 2016, V. 12, P. 30. https://doi.org/10.1186/s13007-016-0130-x

      101. Doaa Abd El monem Emam Sleem. Studies on the bioproduction of gibberellic acid Reviews 23 from fungi. A Thesis for the degree of Doctor Philosophy of Science in Botany (Microbiology). Benha University — Egypt. 2013, 163 p.

      102. Muddapur U. M., Gadkari M. V., Kulkarni S. M., Sabannavar P. G., Niyonzima F. N., More S. S. Isolation and characterization of gibberellic acid 3 producing Fusarium sp. from Belgaum agriculture land Andits impact on green pea and rice growth promotion. Aperito J. Adv. Plan. Biol. 2015, 1 (2), 106. http://dx.doi.org/10.14437/AJAPB-1-106.

      103. Khan A. L., Hussain J., Al-Harrasi A., Al-Rawahi A., Lee I. J. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit. Rev. Biotechnol. 2015, 35 (1), 62–74. doi: https://doi.org/10.3109/07388551.2013.800018

      104. Leitão A. L., Enguita F. J. Gibberellins in Penicillium strains: Challenges for endophyte-plant host interactions under salinity stress. Microbiol. Res. 2016, V. 183, P. 8–18. https://doi.org/10.1016/j.micres.2015.11.004

      105. Jaroszuk-Ściseł J., Kurek E., Trytek M. Efficiency of indoleacetic acid, gibberellic acid and ethylene synthesized in vitro by Fusarium culmorum strains with different effects on cereal growth. Biologia. 2014, 69 (3), 281–292.

      106. Atzorn R., Crozier A., Wheeler C. T., Sandberg G. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta. 1988, 175 (4), 532–538.

      107. Meleigy S. A., Khalaf M. A. Biosynthesis of gibberellic acid from milk permeate in repeated batch operation by a mutant Fusarium moniliforme cells immobilized on loofa sponge. Bioresour. Technol. 2009, 100 (1), 374–379. doi: 10.1016/j. biortech.2008.06.024.

      108. Lale G., Gadre R. Enhanced production of gibberellin A4 (GA4) by a mutant of Gibberella fujikuroi in wheat gluten medium. Ind. Microbiol. Biotechnol. 2010, 37 (3), 297–306.

      109. Kobomoje O. S., Mohammed A. O., Omojasola P. F. The production of gibberellic acid from shea nut shell (Vitellaria paradoxa) using Fusarium moniliforme. Asian J. Plant Sci. Res. 2013, 3 (2), 23–26.

      110. Muromtsev G. S., Krasnopolskaya L. M. Micromycetes strain Fusarium monili forme — producer of phytohormons gibberellins A4, A7. RF Patent № 2084531. Publ. 20.07.1997. (In Russian).

      111. Eleazar M. E. S., Dendooven L., Magaña I. P., Parra R., De laTorre M. Optimization of gibberellic acid production by immobilized Gibberella fujikuroi, mycelium in fluidized bioreactors. J. Biotechnol. 2000, 76 (2–3), 147–155.

      112. Bandelier S., Renaud R., Durand A. Production of gibeberellic acid by fed-batch solid state fermentation in as aseptic pilot-scale reactor. Proc. Biochem. 1997, V. 32, P. 141–145.

      113. Machado C. M. M., Soccol C. R., Pandey A. Gibberellic acid production by solid state fermentation in coffee husk. Appl. Biochem. Biotechnol. 2002, V. 102, P. 179–192.

      114. Corona A., Sanchez D., Agostin E. Effect of water activity on gibberellic acid production by Gibberella fujikuroi under solid-state fermentation conditions. Proc. Biochem. 2005, V. 40, P. 2655–2658.

      115. de Oliveira J., Rodrigues C., Vandenberghe L. P. S., Câmara M. C., Libardi N., Soccol C. R. Gibberellic acid production by different fermentation systems using citric pulp as substrate/support. Biomed. Res. Int. 2017; 2017:5191046. https://doi.org/10.1155/2017/5191046

      116. Hori K., Ichinohe R., Unno H., Marsudi S. Simultaneous syntheses of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa IFO3924 at various temperatures and from various fatty acids. Biochem. Eng. J. 2011, 53 (2), 196–202.

      117. Liang T. W., Wu C. C., Cheng W. T., Chen Y. C., Wang C. L., Wang I. L., Wang S. L. Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Appl. Biochem. Biotechnol. 2014, 172 (2), 933–950.

      118. Sharma D., Singh Saharan B. Simultaneous production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. Int. J. Microbiol. 2014, 2014:698713. https://doi.org/10.1155/2014/698713

      119. Pirog T. P., Konon A. D., Sofilkanich A. P., Iutinskaya G. A. Effect of surface-active substances of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017, and Nocardia vaccinii K-8 on phytopathogenic bacteria. Appl. Biochem. Microbiol. 2013, 49 (4), 3604–367. https://doi.org/ 10.1134/S000368381304011X.

      120. Pirog T. P., Leonova N. O., Shevchuk T. A., Panasuk E. V., Beregovaya K. A., Iutynskaya G. A. Synthesis of phytohormones by Nocardia vaccinii IMV B-7405 — producer of surfactants. Mikrobiol. Zh. 2015, 77 (6), 21–30. (In Russian).

      121. Pacwa-Płociniczak M., Płociniczak T., Iwan J., Żarska M., Chorążewski M., Dzida M., Piotrowska-Seget Z. Isolation of hydrocarbon-degrading and biosurfactantproducing bacteria and assessment their plant growth-promoting traits. J. Environ. Manage. 2016, V. 168, P. 175–84. https://doi.org/10.1016/j.jenvman.2015.11.058