Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2017 № 4 APPLICATION OF ARTIFICIAL NEURAL NETWORKS METHOD IN BIOTECHNOLOGY O. M. Klyuchko
Print PDF

ISSN 410-7751 (Print)
ISSN 2410-776X (on-line)

"Biotechnologia Acta" V. 10, No 2, 2017
https://doi.org/10.15407/biotech10.04.005
Р. 5-13, Bibliography 22, English
Universal Decimal Classification: 004:591.5:612:616-006

APPLICATION OF ARTIFICIAL NEURAL NETWORKS METHOD IN BIOTECHNOLOGY

O. M. Klyuchko

Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv

The aim of the work was to analyze the method of artificial neural networks and to examine its implementation in biotechnology. Nearly 300 publications are reviewed because this method is very widely used. The artificial neural networks are described and analyzed, and the examples of their application in biology and medicine are given. Solutions of complex problems, which required combining this method with other modern mathematical methods, are examined. Recommendations are presented for the application of this method in biotechnology.

Key words: mathematical methods, biotechnology, artificial neural networks, software, databases.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017

  • References
    • 1. Klyuchko O. M. Information and computer technologies in biology and medicine. Kyiv: NAU-druk, 2008. 252 p. (In Ukrainian).

      2. Kallan G. Basic Concepts of Neural Networks. Moskva:Williams. 2001.  268 p. (In Russian).

      3. Kondrashov S. N, Gorokhova M. N. Development of an algorithm for optimal control of the process of formaldehyde production. Vestnik PNIPU "Chemical technology and biotechnology". 2016 No. 1, P. 718. (In Russian).

      4. "Classification and search of biomarkers in proteomics” Fvailable at http://bioinformatics.ru/Raznoe/Klassifikatciia-i-poisk-biomarkerov-v-proteomike.html (In Russian).

      5. D'haeseleer P. How does gene expression clustering work? Nature Biotechnology. 2005, N 23, P. 1499–1501. https://doi.org/10.1038/nbt1205-1499

      6. Montague G., Morris J. Neural-network contributions in biotechnology. Trends Biotechnol. 1994, 12 (8), 312–324. https://doi.org/10.1016/0167-7799(94)90048-5

      7. Kurtanjek Ž. Modeling and control by artificial neural networks in biotechnology. Comput. Chem. Engin. 1994, V. 18, Suppl 1, P. S627–S631. https://doi.org/10.1016/0098-1354(94)80102-9

      8. Iakovidis D. K., Maroulis D. E., Karkanis S. A. Texture multichannel measurements for cancer precursors’ identification using support vector machines. Measurement. 2004, V. 36, Is, 3¾4, P. 297–313.

      9. Prachi Damodhar Shahare, Ram Nivas Giri. Comparative Analysis of Artificial Neural Network and Support Vector Machine Classification for Breast Cancer Detection. Int. Res. J. Engin. Technol. (IRJET). 2015, V. 02, Issue 09.

      10. Vecht-Lifshitz S. E., Ison A. P. Biotechnological applications of image analysis: present and future prospects. J. Biotechnol. 992, 23 (1), 1–18.

      11. Goldys E. M. Fluorescence Applications in Biotechnology and the Life Sciences. USA: John Wiley & Sons. 2009, 367 p.

      12. Perner P., Salvetti O. Advances in Mass Data Analysis of Images and Signals in Medicine, Biotechnology, Chemistry and Food Industry. Third International Conference, Leipzig, (Germany): Springer, 2008, Proceedings. 2008, 173 p.

      13. Gavrilovich M. Spectra image processing and application in biotechnology and pathology. Dissertation for Ph.D. Acta Universitatis Upsaliensis. Upsala. 2011, 63 p.

      14. Shutko V. M, Shutko O. M., Kolganova O. O. Methods and means of compression of information. Kyiv: Naukova dumka. 2012. 168 p. (In Ukrainian).

      15. Natrajan R. Sailem H; Mardakheh FK; Arias Garcia M; Tape CJ; Dowsett M; Bakal C; Yuan Y. Microenvironmental heterogeneity parallels breast cancer progression: a histology–genomic integration analysis. PLoS Med. 2016, 13 (2), e1001961. https://doi.org/10.1371/journal.pmed.1001961

      16. Rebello S., Maheshwari U., DSouza S., DSouza R. V. Back propagation neural network method for predicting Lac gene structures in Streptococcus pyogenes M Group A Streptococcus strains. Int. J. Biotechnol. Mol. Biol. Res. 2 (4), 61–72.

      17. Moghaddam M. G., Ahmad F. B. H., Basri M., Rahman M. B. A. Artificial neural network modeling studies to predict the yield of enzymatic synthesis of betulinic acid ester. Electr. J. Biotechnol. 2010, 13 (3), 9–15. https://doi.org/10.2225/vol13-issue3-fulltext-9

      18. Montague G, Morris J. Neural-network contributions in biotechnology. Trends Biotechnol. 1994, 12 (8), 312–324. https://doi.org/10.1016/0167-7799(94)90048-5

      19. Kryzhanivska A.Ye. Local widespread cervical cancer. Ph.D. dissertation abstract.  Ivano-Frankivsk, 2015. (In Ukrainian).

      20. Onopchuk Yu.M., Biloshitsky P.V., Klyuchko O. M. Development of mathematical models based on the results of researches of Ukrainian scientists at Elbrus. Visnyk NAU, 2008, No3, P. 146-155. (In Ukrainian).

      21. Araújo T. Classification of breast cancer histology images using Convolutional Neural Networks. PloS One. 2017, 12 (6), e0177544. https://doi.org/10.1371/journal.pone.0177544

      22. Dan C. Cirean, Alessandro Giusti, Luca M. Gambardella, Jürgen Schmidhuber. Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. Med Image Comput Comput Assist Interv, (2013)