Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2017 № 3 REGULATION OF CHLOROPHYLL DEGRADATION IN PLANT TISSUES Syvash O. O.,O. O., Zolotareva O. K.
Print PDF

"Biotechnologia Acta" V. 10, No 3, 2017, Р. 20-30
https://doi.org/10.15407/biotech10.03.020
in English

REGULATION OF CHLOROPHY LL DEGRADATION IN PLANT TISSUES

Syvash O. O., Zolotareva O. K.

The purpose of the review was to analyze the basic biochemical processes leading to the chlorophyll degradation and ways to control this process in plant product storage. First of all, this is a complex of enzymatic reactions starting with the hydrolysis of chlorophyll with the formation of acyclic diterpene phytol and water-soluble chlorophyllide. An alternative primary reaction is the removal of magnesium from the chlorophyll tetrapyrrole ring to form pheophytin with the participation of Mg2+-dechelatase and/or low-molecular Mg2+-dechelating substances. The chlorophyll breakdown can also be caused by free radicals formed in the peroxidase-catalyzed reaction of Н2О2 with phenolic compounds or fatty acids. The unstable product of chlorophyll peroxidation, C132 –hydroxychlorophyll a decomposes to colorless low-molecular compounds. Expression of the genes of chlorophyll catabolism enzymes is controlled by phytohormones. Methods for controlling the pigment decomposition during storage of plant products are associated with the use of activators and inhibitors of chlorophyll decomposition. The best known inductor of the synthesis of catabolic enzymes is ethylene, widely used to accelerate fruit ripening. Gibberellins, cytokinins and nitric oxide, on the contrary, slow down the loss of chlorophyll.

Key words: chlorophyll, chlorophyllase, pheophytin, peroxidase, phytohormones, ethylene.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017

  • References
    • 1. Syvash O. O., Zolotareva E. K. Chlorophyll catabolism in plants. Biulleten Kharkivskoho Natsional. ahrar. un-tu (Ser. Biol.). 2013, 2 (30), 6–17. (In Russian).

      2. Matile P., Hörtensteiner S., Thomas H. Chlorophyll degradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, V. 50, P. 67–95. doi: 10.1146/annurev. arplant.50.1.67.

      3. Hendry G. A. F., Houghton J. D., Brown S. B. The degradation of chlorophyll – a biological enigma. New Phytol. 1987, V. 107, P. 255–302. https://doi.org/10.1111/j.1469-8137.1987.tb00181.x

      4. Oberhuber M., Berghold J., Breuker K., Hörtensteiner S., Kraütler B. Breakdown of chlorophyll: a nonenzymatic reaction accounts for the formation of the colorless “nonfluorescent” chlorophyll catabolites. Proc. Natl. Acad. Sci. USA. 2003, 100 (12), 6910–6915. https://doi.org/10.1073/pnas.1232207100

      5. Banas A. K., Łabuz J., Sztatelman O., Gabrys H., Fiedor L. Expression of Enzymes Involved in Chlorophyll Catabolism in Arabidopsis Is Light Controlled. Plant Physiol. 2011, V. 157, P. 1497–1504. https://doi.org/10.1104/pp.111.185504

      6. Hörtensteiner S. Update on the biochemistry of chlorophyll breakdown. Plant Mol. Biol. 2013, 82 (6), 505–517. https://doi.org/10.1007/s11103-012-9940-z

      7. Takamiya K., Tsuchiya T., Hiroyuki O. Degradation pathway(s) of chlorophyll: What has gene cloning revealed? Trends Plant Sci. 2000, V. 5, P. 1360–1385. https://doi.org/10.1016/S1360-1385(00)01735-0

      8. Khanna-Chopra R. Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma. 2012, 249 (3), 469–481. https://doi.org/10.1007/s00709-011-0308-z

      9. Jyothsna P., Murthy S. D. S. A review on effect of senescence in plants and role of phytohormones in delaying senescence. Int. J. Plant. Anim. Env.Sci. 2016, 6 (1), 152–161.

      10. Yamauchi N. Quality maintenance of postharvest horticultural crops by stress treatments and approach for the elucidation of its mechanism. J. Jpn. Soc. Hortic. Sci. 2013, 82 (1), 1–10. https://doi.org/10.2503/jjshs1.82.1

      11. Jacob-Wilk D., Holland D., Goldschmidt E. E., Riov J., Eyal Y. Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylenetreated Citrus fruit and its regulation during Development. Plant J. 1999, 20 (6), 653–661. https://doi.org/10.1046/j.1365-313X.1999.00637.x

      12. Suzuki T., Kunieda T., Murai F., Morioka S., Shioi Y. Mg-dechelation activity in radish cotyledons with artificial and native substrates, Mg-chlorophyllin a and chlorophyllide a. Plant Physiol. Biochem. 2005, V. 43, P. 459–464. https://doi.org/10.1016/j.plaphy.2005.03.009

      13. Trebitsh T., Goldschmidt E. E., Riov J. Ethylene induces de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme, in Citrus fruit peel. Proc. Natl. Acad. Sci. USA. 1993, V. 90, P. 9441–9445. https://doi.org/10.1073/pnas.90.20.9441

      14. Fomishyna R. N., Syvash O. O., Zakharova T. O., Zolotareva E. K. The role of Chlorophyllase in adaptation of plants to light regimes Ukr. Botan. Zh. 2009, 66 (1), 94–102. (In Ukrainian).

      15. Chen L. F. O., Lin C. H., Kelkar S. M., Chang Y. M., Shaw J. F. Transgenic broccoli (Brassica oleracea var. italicia) with antisense chlorophyllase (BoCLH1) delays postharvest yellowing. Plant Sci. 2008, V. 174, P. 25–31. doi: rg/10.1016/j.plantsci.2007.09.006.

      16. Kräutler B., Hörtensteiner S. Chlorophyll catabolites and the biochemistry of chlorophyll breakdown. Chlorophylls and bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications, Advances in Photosynthesis and Respiration 25. Ed. by B. Grimm, R. J. Porra, W. Rüdiger, H. Scheer. Springer Netherlands. 2006, P. 237–260. https://doi.org/10.1007/1-4020-4516-6_17

      18. Hörtensteiner S., Vicentini F., Matile P. “Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: enzymatic cleavage of phaeophorbide a in vitro. New Phytologist. 1995, 129 (2), 237–246. https://doi.org/10.1111/j.1469-8137.1995.tb04293.x

      19. Hörtensteiner S., Kräutler B. Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta. 2011, 1807 (8), 977–988. https://doi.org/10.1016/j.bbabio.2010.12.007

      20. Park S-Y., Yu J-W., Park J-S., Li J., Yoo S-C., Lee N-Y., Lee S-K., Jeong S-W., Seo H. S., Koh H-J., Jeon J-S., Park Y.-I., Paek N-C. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell. 2007, V. 19, P. 1649–1664. https://doi.org/10.1105/tpc.106.044891

      21. Hörtensteiner S. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci. 2009, V. 14, P. 155–162. https://doi.org/10.1016/j.tplants.2009.01.002

      22. Meguro M., Ito H., Takabayashi A., Tanaka R., Tanaka A. Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis. Plant Cell. 2011, V. 23, P. 3442–3453. https://doi.org/10.1105/tpc.111.089714

      23. Schelbert S., Aubry S., Burla B., Agne B., Kessler F., Krupinska K., Hörtensteiner S. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell. 2009, 21 (3), 767–785. https://doi.org/10.1105/tpc.108.064089

      24. Syvash O. O., Fomishyna R. N., Zakharova T. O., Zolotareva E. K. Chlorophyllase activity and pigment composition in leaves of forest plants of different layers of broad-leaved forest. Biulleten Kharkivskoho Natsional. ahrar. un-tu (Ser. Biol.). 2016, 2 (38), 75–83. (In Ukrainian).

      25. Shemer T. A., Harpaz-Saad S., Belausov E., Lovat N., Krokhin O., Spicer, V., Standing K. G., Goldschmidt E. E., Eyal Y. Citrus chlorophyllase dynamics at ethyleneinduced fruit color-break: a study of chlorophyllase expression, posttranslational processing kinetics, and in situ intracellular localization. Plant physiol. 2008, 148 (1), 108–118. https://doi.org/10.1104/pp.108.124933

      26. Yamauchi N., Watada A. E. Regulated chlorophyll degradation in spinach leaves during storage. J. Am. Soc. Hortic. Sci. 1991, 116 (1), 58–62.

      27. Yamauchi N., Funamoto Y., Shigyo M. Peroxidase-mediated chlorophyll degradation inhorticultural crops. Phytochem. Rev. 2004, 3 (1–2), 221–228. https://doi.org/10.1023/B:PHYT.0000047796.98784.06

      28. Wang K. L., Li H., Ecker J. R. Ethylene biosynthesis and signaling networks. Plant Cell. 2002, 12 (suppl 1), Р. 131–151. doi: 10.1105/tpc.001768.

      29. Azoulay-Shemer T., Harpaz-Saad S., Belausov E., Lovat N., Krokhin O., Spicer V., Standing K. G., Goldschmidt E. E., Eyal Y. Citrus chlorophyllase dynamics at ethyleneinduced fruit color-break: A study of chlorophyllase expression, posttranslational processing kinetics, and in situ intracellular localization. Plant Physiol. 2008, V. 148, P. 108–118. https://doi.org/10.1104/pp.114.239541

      30. Saltveit M. E. Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biol. Technol. 1999, 15 (3), 279–292. https://doi.org/10.1016/S0925-5214(98)00091-X

      31. Iglesias D. J., Tadeo F. R., Legaz F., Primo-Millo E., Talon M. In vivo sucrose stimulation of colour change in citrus fruits epicarps: interactions between nutritional and hormonal signals. Physiol. Plant. 2001, V. 112, P. 244–250. https://doi.org/10.1034/j.1399-3054.2001.1120213.x

      32. Harpaz-Saad S., Azoulay T., Arazi T., Ben-Yaakov E., Mett A., Shiboleth Y. M., Hörtensteiner S., Gidoni D., Gal-On A., Goldschmidt E. E., Eyal Y. Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell. 2007, V. 19, P. 1007–1022. https://doi.org/10.1105/tpc.107.050633

      33. Mínguez-Mosquera M. I., Hornero-Méndez D. Formation and transformation of pigments during the fruit ripening of Capsicum annuum cv. Bola and Agridulce. J. Agric. Food Chem. 1994, 42 (1), 38–44. https://doi.org/10.1021/jf00037a005

      34. Syvash O. O., Mykhaylenko N. F., Zolotareva E. K. Sugars as a key element in the regulation of metabolism of photosynthetic cells. Ukr. Botan. Zh. 2001, 58 (1), 121–127. (In Ukrainian).

      35. Mykhaylenko N. F., Syvash O. O., Tupik N. D., Zolotareva O. K. Exogenous hexoses cause quantitative changes of pigment and glycerolipid composition in filamentous cyanobacteria. Photosynthetica. 2004, 42 (1), 105–110. https://doi.org/10.1023/B:PHOT.0000040577.30424.d1

      36. Misra A. N., Biswal U. C. Effect of phytohormones on chlorophyll degradation during aging of chloroplastsin vivo and in vitro. Protoplasma. 1980, 105 (1–2), 1–8. https://doi.org/10.1007/BF01279845

      37. Tsuchiya T., Ohta H., Okawa K., Iwamatsu A., Shimada H., Masuda T., Takamiya K. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: Finding of a lipase motif and the induction by methyl jasmonate. Proc. Natl. Acad. Sci. USA. 1999, 96 (26), 15362–15367. https://doi.org/10.1073/pnas.96.26.15362

      38. Kariola T., Brader G., Li J., Palva E. T. Chlorophyllase 1, a damage control enzyme, affects the balance between defence pathways in plants. Plant Cell. 2005, V. 17, P. 282–294. https://doi.org/10.1105/tpc.104.025817

      39. Suzuki T., Shioi Y. Re-examination of Mgdechelation reaction in the degradation of chlorophylls using chlorophyllin a as a substrate. Photosynth. Res. 2002, V. 74, P. 217–223. https://doi.org/10.1023/A:1020915812770

      40. Costa M. L., Civello P. M., Chaves A. R., Mart´ınez G. A. Effect of ethephon and 6-benzylaminopurine on chlorophyll degrading enzymes and a peroxidase-linked chlorophyll bleaching during post-harvest senescence of broccoli (Brassica oleracea L.) at 20 ºC. Postharv. Biol. Technol. 2004, V. 35, P. 191–199. https://doi.org/10.1016/j.postharvbio.2004.07.007

      41. Matile P., Hortensteiner S., Thomas H., Krautler B. Chlorophyll breakdown in senescent leaves. Plant physiol. 1996, 112 (4), 1403–1409. https://doi.org/10.1104/pp.112.4.1403

      42. Kunieda T., Amano T., Shioi Y. Search for chlorophyll degradation enzyme, Mgdechelatase, from extracts of Chenopodium album with native and artificial substrates. Plant Sci. 2005, 169 (1), 177–183. https://doi.org/10.1016/j.plantsci.2005.03.010

      43. Schelbert S., Aubry S., Burla B., Agne B., Kessler F., Krupinska K., Hörtensteiner S. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. The Plant Cell. 2009, 21 (3), 767–785. https://doi.org/10.1105/tpc.108.064089

      44. Muzafarov E. N., Ivanov B. N., Mal’yan A. N., Zolotareva E. K. Dependence of flavonol functions on their chemical structure in chloroplast energy reactions. Biochem. Physiol. Pflanz. 1986, 181 (6), 381–390. https://doi.org/10.1016/S0015-3796(86)80024-5

      45. Muzafarov E. N., Zolotareva E. K. Uncoupling effect of hydroxycinnamic acid derivatives on pea chloroplasts. Biochem. Physiol. Pflanz. 1989, 184 (5), 363–369. https://doi.org/10.1016/S0015-3796(89)80030-7

      46. Aiamlaor S., Shigyo M., Ito S., Yamauchi N. Involvement of chloroplast peroxidase on chlorophyll degradation in postharvest broccoli florets and its control by UV-B treatment. Food Chem. 2014, V. 165, P. 224–231. https://doi.org/10.1016/j.foodchem.2014.05.108

      47. Janave M. T. Enzymic degradation of chlorophyll in cavendish bananas: in vitro evidence for two independent degradative pathways. Plant Physiol. Biochem. 1997, 35 (11), 837–846.

      48. Büchert A. M., Civello P. M., Martínez G. A. Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescence of broccoli. J. Plant Physiol. 2011, 168 (4), 337–343. https://doi.org/10.1016/j.jplph.2010.07.011

      49. Gómez F., Fernández L., Gergoff G., Guiamet J. J., Chaves A., Bartoli C. G. Heat shock increases mitochondrial H2O2 production and extends postharvest life of spinach leaves. Postharvest. Biol. Technol. 2008, 49 (2), 229–234. https://doi.org/10.1016/j.postharvbio.2008.02.012

      50. Yamauchi N. Postharvest chlorophyll degradation and oxidative stress. In: Abiotic Stress Biology in Horticultural Plants. Springer Japan. 2015, 101–113. https://doi.org/10.1007/978-4-431-55251-2_8

      51. Funamoto Y., Yamauchi N., Shigenaga T., Shigyo M. Effects of heat treatment on chlorophyll degrading enzymes in stored broccoli (Brassica oleracea L.). Postharvest. Biol. Technol. 2002, 24 (2), 163–170. https://doi.org/10.1016/S0925-5214(01)00135-1

      52. Büchert A. M., Civello P. M., Martínez G. A. Effect of hot air, UV-C, white light and modified atmosphere treatments on expression of chlorophyll degrading genes in postharvest broccoli (Brassica oleracea L.) florets. Sci. Hortic. 2010, 127 (3), 214–219. https://doi.org/10.1016/j.scienta.2010.11.001

      53. Lin J. F., Wu S. H. Molecular events in senescing Arabidopsis leaves. Plant J. 2004, 39 (4), 612–628. https://doi.org/10.1111/j.1365-313X.2004.02160.x

      54. Mahalingam R., Jambunathan N., Gunjan S. K., Faustin E., Weng H. U. A., Ayoubi P. Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana. Plant Cell Environ. 2006, 29 (7), 1357–1371. https://doi.org/10.1111/j.1365-3040.2006.01516.x

      55. Turan S., Tripathy B. C. Salt–stress induced modulation of chlorophyll biosynthesis during de–etiolation of rice seedlings. Physiol. Plantarum. 2015, 153 (3), 477–491. https://doi.org/10.1111/ppl.12250

      56. Adamchuk N. I., Mikhaylenko N. F., Zolotareva E. K., Hilaire E., Guikema J. A. Spaceflight effects on structural and some biochemical parameters of Brassica rapa photosynthetic apparatus. Journal of gravitational physiology: a journal of the International Society for Gravitational Physiology. 1999, 6 (1), 95–96.

      57. Pádua G. P., França Neto J. B., Carvalho M. L., Krzyzanowski F. C., Guimarães R. M. Rev. Brasil Sementes. 2009, 31 (3), 150–159. https://doi.org/10.1590/S0101-31222009000300017

      58. Ruuska S. A., Schwender J., Ohlrogge J. B. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol. 2004, 136 (1), 2700–2709. https://doi.org/10.1104/pp.104.047977

      59. Johnson-Flanagan A., Singh J., Thiagarajah M. The impact of sublethal freezing during maturation of pigment content in seeds of Brassica napus. J. Plant Physiol. 1990, V. 136, P. 385–390. https://doi.org/10.1016/S0176-1617(11)80024-6

      60. Levadoux W. L., Kalmokoff M. L., Pickard M. D., GrootWassink J. W. D. Pigment removal from canola oil using chlorophyllase. J. Am. Oil Chem. Soc. 1987, 64 (1), 139–144. https://doi.org/10.1007/BF02546269

      61. Kharnessan A., Kermasha S. Biocatalysis of chlorophyllase in canola oil using organic solvent systems. J. Food Biochem. 1996, 20 (1), 73–81. https://doi.org/10.1111/j.1745-4514.1996.tb00558.x

      62. Arriagada-Strodthoff P., Karboune S., Neufeld R. J., Kermasha S. Optimization of Chlorophyllasecatalyzed Hydrolysis of Chlorophyll in Monophasic Organic Solvent Media. Appl. Biochem. Biotechnol. 2007, 142 (3), 263–275. https://doi.org/10.1007/s12010-007-0021-8

      63. McClinchey S. L., Kott L. S. Production of mutants with high cold tolerance in spring canola (Brassica napus). Euphytica. 2008, 162 (1), 51–67. https://doi.org/10.1007/s10681-007-9554-8

      64. Tsang E. W., Yang J., Chang Q., Nowak G., Kolenovsky A., McGregor D. I., Keller W. A. Chlorophyll reduction in the seed of Brassica napus with a glutamate 1-semialdehyde aminotransferase antisense gene. Plant Mol. Biol. 2003, 51 (2), 191–201. https://doi.org/10.1023/A:1021102118801