Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2017 № 2 INDUSTRIAL WASTE BIOCONVERSION INTO SURFACTANTS BY Rhodococcus erythropolis ІMV Ас-5017, Acinetobacter calcoaceticus ІMV В-7241 and Nocardia vaccinii ІMV В-7405 T. P. Pirog, M. O. Shulyakova, L. V. Nikituk, S. I. Antonuk, I. V. Elperin
Print PDF

"Biotechnologia Acta" V. 10, No 2, 2017
DOI: 10.15407/biotech10.02.022
Р. 22-33, Bibliography 35, English
Universal Decimal Classification: 759.873.088.5:661.185

INDUSTRIAL WASTE BIOCONVERSION INTO SURFACTANTS  BY   Rhodococcus erythropolis ІMV Ас-5017, Acinetobacter calcoaceticus ІMV В-7241 and  Nocardia vaccinii ІMV В-7405

T. P. Pirog, M. O. Shulyakova, L. V. Nikituk, S. I. Antonuk, I. V. Elperin

National University of Food Technologies, Kyiv

The aim of the work is to realize an alternative processing of toxic industrial waste into surfactants by strains Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 for remediation of environment.

The studied strains were grown in liquid media containing such sources of carbon as waste (fried) sunflower oil, technical glycerol (by-product of biodiesel production), and aromatic compounds. The synthesis of surfactants was evaluated by emulsification index, conditional concentration of surfactants and concentration of extracellular surfactants, which was determined gravimetrically after their extraction from supernatant by the mixture of methanol and chloroform. The concentration of oil in water and soil was analyzed by gravimetric method after extraction with hexane.

It was shown that with increasing concentration of the inoculum up to 10−15% and two times increase of nitrogen source content in medium containing 7−8% (v/v) of crude glycerol, concentration of surfactants synthesized by R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B 7241 and N. vaccinii IMV B-7405 was 3.4; 5.0 and 5.3 g/l, respectively, that is 1.6−1.7 times higher as compared with values on basal medium with the same content of substrate. The maximum concentration (3.9−4.3 g/l) of surfactants synthesized by A. calcoaceticus IMV B-7241 on fried sunflower oil (4%) was achieved by using the inoculum grown on refined oil. The ability of R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 to decompose aromatic compounds (phenol, naphthalene, toluene, hexachlorobenzene, benzoic and N-phenylanthranilic acid) with simultaneous synthesis of extracellular metabolites with surface-active and emulsifying properties was established. In the presence of surfactants in the form of culture liquid (5−10%), the degree of degradation of complex oil with heavy metal (Cu2+, Cd2+, Pb2+, 0.01−0.5 mmol) pollution in water (3−6 g/l ) and soil (20 g/kg) after 20 days was 82−92%.

Bioconversion of industrial waste into surfactants for environmental technology allows recycling toxic waste, reducing costs of microbial surfactants and provides double effect of environmental purification, which is achieved in the production and use of microbial surfactants.

Key words: industrial waste, microbial surfactants,   environment remediation.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017

  • References
    • 1. Pirog T. P., Grytsenko N. A.,  Sofilkanych A. P., Savenko I. V. Technologies of synthesis of organic  substances by microorganisms using waste biodiesel production. Biotechnol. acta. 2015, 8(3), 9−27. https://doi.org/10.15407/biotech8.03.009.

      2. Kalia V.C., Prakash J., Koul S. Biorefinery for glycerol rich biodiesel industry waste. Ind.  J. Microbiol. 2016, 56(2), 113−125. https://doi.org/10.1007/s12088-016-0583-7.

      3. Haritash A.K, Kaushik C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J.  Hazard. Mater.  2009, 169(1−3), 1–15.

      4. Tyagi M., da Fonseca M.M., de Carvalho C.C. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes.  Biodegradation. 2011, 22(2), 231–241.

      5. Pandey P., Pathak H., Dave S. Microbial ecology of hydrocarbon degradation in the soil: a review. Res. J. Environ. Toxicol. 2016, 10 (1), 1−15. https://doi.org/10.3923/rjet.2016.1.15.

      6. Kаstner M., Breuer-Jammolali M., Mahro B. Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl. Environ. Microbiol. 1998, 64(1), 359–362.

      7. Sandrin T.R., Chech A.M., Maier R.M. Rhamnolipid вiosurfactant reduces cadmium toxicity during naphthalene biodegradation. Appl. Environ. Microbiol.  2000, 66(10), 4585–4588.

      8. Olaniran A.O., Balgobind A., Pillay B. Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int. J. Mol. Sci. 2013, 14(5) 10197–10228.

      9. Mnif I., Ghribi D. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. J. Sci. Food Agric. 2016, 96(13),4310−4020. https://doi.org/10.1002/jsfa.7759

      10. Usman MMOL, Dadrasnia A, Lim K.T., Fahim A. Application of biosurfactants in environmental biotechnology; remediation of oil and heavy metal. AIMS Bioengineering, 2016, 3(3), 289−304. https://doi.org/10.3934/bioeng.2016.3.289

      11. Pirog T. P., Konon A. D., Savenko I. V. Microbial surfactants in environmental technologies. Biotechnologia acta, 2015, 8(4), 21−39. https://doi.org/10.15407/biotech8.04.021.

      12. Pirog T.P., Shevchuk T.A., Voloshina I.N., Gregirchak N.N. Use of claydite-immolobilized oil-oxidizing microbial cells for purification of water from oil.  Appl. Biochem. Microbiol. 2005, 41(1), 51–55. https://doi.org/10.1007/s10438-005-0010-z.

      13. Pidhorskyy V., Iutinska G., Pirog T. Intensification of microbial synthesis technologies.  К.: Nauk. Dumka, 2010.  327 p. [In Ukrainian].

      14. De Faria A. F., Teodoro-Martinez D. S., de Oliveira Barbosa G. N., Vaz B. G., Silva I. S., Garcia J. S., Totola M. R., Eberlin M. N., Grossman M., Alves O. L., Durrant L. R. Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Proc. Biochem. 2011, 46(9), 1951–1957.

      15. De Sousa J. R., da Costa Correia J. A., de Almeida J. G. L., Rodrigues S., Pessoa O. D. L., Melo V. M. M., Goncalves L. R.B. Evaluation of a co-product of biodiesel production as carbon source in the production of biosurfactant by Pseudomonas aeruginosa MSIC02. Proc. Biochem. 2011, 46(9), 1831–1839.

      16. Wadekar S.D., Kale S.B., Lali A.M., Bhowmick D.N., Pratap A.P. Utilization of sweetwater as a cost-effective carbon source for sophorolipids production by Starmerella bombicola (ATCC 22214). Prep. Biochem. Biotechnol.  2012, 42(2), 125−142.

      17 . Liu Y.,Koh C.M., Ji L. Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresour. Technol. 2011, 102(4), 3927−3933.

      18. Eraqi W.A., Yassin A.S., Ali A.E., Amin M.A. Utilization of crude glycerol as a substrate for the production of rhamnolipid by Pseudomonas aeruginosa. Biotechnol. Res. Int. 2016. https://doi.org/10.1155/2016/3464509

      19. Bhardwaj G., Cameotra S.S., Chopra H.K. Utilization of oleo-chemical industry by-products for biosurfactant production. AMB Express. 2013. https://doi.org/10.1186/2191-0855-3-68.

      20. Govindammolal M., Parthasarathi  R. Production and characterization of biosurfactant using renewable substrates by Pseudomonas fluorescence isolated from mangrove ecosystem. J. Appl. Chem. 2013, 2(1), 55–62.

      21. Saravanan V., Subramaniyan V.   Production of biosurfactant by Pseudomonas aeruginosa PB3A using agro-industrial wastes as a carbon source. Malays. J. Microbiol. 2014,10(1), 57–62.

      22. Banat I.M., Satpute S.K., Cameotra S.S., Patil R., Nyayanit N.V. Cost effective technologies and renewable substrates for biosurfactants' production. Front.  Microbiol.  2014. https://doi.org/10.3389/fmicb.2014.00697

      23. Luo Z., Yuan X., Zhong H., Zeng G., Liu Z., Ma X., Zhu Y. Optimizing rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 grown on waste frying oil using response surface method and batchfed fermentation. J. Cent. South Univ.  2013, 20, 1015−1021. doi: 10.1007/s1177101315788.

      24. Reddy M.S., Naresh B., Leela T., Prashanthi M., Madhusudhan N.C., Dhanasri G., Devi P. Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresour. Technol.  2010, 101 (20), 7980–7983. https://doi.org/10.1016/j.biortech.2010.04.054

      25. Masakorala K., Yao J., Cai M., Chandankere R., Yuan H., Chen H. Isolation and characterization of a novel phenanthrene (PHE) degrading strain Pseudomonas sp. USTB-RU from petroleum contaminated soil. J. Hazard. Mater.  2013, 263(2), 493−500. https://doi.org/10.1016/j.jhazmat.2013.10.007

      26. Yuan H., Yao J., Masakorala K., Wang F., Cai M., Yu C. Isolation and characterization of a newly isolated pyrene-degrading Acinetobacter strain USTB-X. Environ. Sci. Pollut. Res. Int. 2014, 21(4), 2724−2732. https://doi.org/10.1007/s11356-013-2221-9

      27. Nie M., Yin X., Ren C., Wang Y., Xu F., Shen Q. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol. Adv. 2010, 28(5), 635−643. https://doi.org/10.1016/j.biotechadv.2010.05.013

      28. De Almeida D.G., Soares Da Silva R.C., Luna J.M., Rufino R.D., Santos V.A., Banat I.M., Sarubbo L.A. Biosurfactants: promising molecules for petroleum biotechnology advances. Front Microbiol. 2016, 7. https://doi.org/10.3389/fmicb.2016.01718.

      29. Pacwa-Płociniczak M., Płaza G.A., Poliwoda A., Piotrowska-Seget Z. Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil. Environ. Sci. Pollut. Res. Int. 2014, 21(15), 9385−9395. https://doi.org/10.1007/s11356-014-2872-1.

      30. Pirog T. P., Panasyuk E. V., Antonyuk N. A. Impact of microbial Nocardia vaccinii IMB B-7405 surfactants on oil destruction in water. J. Water Chem. Technol. 2016, 38(5), 301−306. https://doi.org/10.3103/S1063455X1605009X

      31.  Guibert L.M., Loviso C.L., Marcos M.S., Commolendatore M.G., Dionisi H.M., Lozada M. Alkane biodegradation genes from chronically polluted subantarctic coastal sediments and their shifts in response to oil exposure. Microb. Ecol. 2012, 64(3), 605−616.

      32.  Jurelevicius D., Alvarez V.M., Peixoto R., Rosado A.S., Seldin L. The use of a combination of alkB primers to better characterize the distribution of alkane-degrading bacteria. PLoS One. 2013, 8(6).  https://doi.org/10.1371/journal.pone.0066565

      33. Paisse S., Duran R., Coulon F., Goñi-Urriza M. Are alkane hydroxylase genes (alkB) relevant to assess petroleum bioremediation processes in hronically polluted coastal sediments?  Appl. Microbiol. Biotechnol. 2011, 92(4), 835−844.

      34. Semrau J.D., DiSpirito A.A., Yoon S. Methanotrophs and copper. FEMS Microbiol. Rev. 2010, 34(4), 496−531.

      35.  Pirog T.P., Konon A.D., Sofilkanich A.P., Shevchuk T.A., Parfeniuk S.A. Effect of Cu2+ on synthesis of biosurfactants of Acinetobacter calcoaceticus IMV B-7241 and Rhodococcus erythropolis IMV Ac-5017. Mikrobiol. Zh. 2013, 75(1), 3–13. [In Russian].



 

Additional menu

Site search

Site navigation

Home Archive 2017 № 2 INDUSTRIAL WASTE BIOCONVERSION INTO SURFACTANTS BY Rhodococcus erythropolis ІMV Ас-5017, Acinetobacter calcoaceticus ІMV В-7241 and Nocardia vaccinii ІMV В-7405 T. P. Pirog, M. O. Shulyakova, L. V. Nikituk, S. I. Antonuk, I. V. Elperin

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.