Biotechnologia Acta


  • Increase font size
  • Default font size
  • Decrease font size
Print PDF

"Biotechnologia Acta" V. 10, No 1, 2017
Р. 17-25, Bibliography 41, English
Universal Decimal Classification: 606:577.21


T. O. Deputatova

De Novo, LLC, Kyiv, Ukraine

To analyze the recent studies elucidating the molecular mechanisms of pluripotency induction and crucial stages of the reprogramming process was the aim of the review. The key focus is on the factors enabling switch between the reprogramming stages. It is concluded that one of the key barriers for iPSC applications is the multi-stage nature of somatic cells reprogramming that features both stochastic early phases and deterministic establishment of pluripotent regulatory network. Despite thousands of scientific studies, various reprogramming protocols restrict effective research analysis and identification of molecular reprogramming mechanisms. In order to specify accurate reprogramming algorithms and develop more effective protocols of patient specific reprogrammed cells cultivation, the future researches require focus on the phase transition switchers.

Key words: pluripotency induction, reprogramming, somatic cells, induced pluripotent stem cells.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017

  • References
    • 1. Karpov O. V., Demydov S. V., Kyryachenko S. S. Cellular and gene engineering. Kyiv: Phytosociocenter. 2010, 208 p. (In Ukrainian).

      2. Wu J., Yamauchi T., Izpisua Belmonte J. C. An overview of mammalian pluripotency. Development. 2016, 143 (10), 1644‒1648.

      3. Condic M. L. Totipotency: What It Is and What It Is Not. Stem Cells Dev. 2014, 23 (8), 796–812.

      4. Gurdon J. B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 1962, V. 10, P. 622–640.

      5. Blau H. M. Sir John Gurdon: father of nuclear reprogramming. Differentiation. 2014, 88 (1), 10–12.

      6. Evans M. J., Kaufman M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981, N 292, P. 154–156.

      7. Martin G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA. 1981, V. 78, P. 7634–7638.

      8. Thomson J. A., Itskovitz-Eldor J., Shapiro S. S., Waknitz M. A., Swiergiel J. J., Marshall V. S., Jones J. M. Embryonic stem cell lines derived from human blastocysts. Science. 1998, N 282, P. 1145–1147.

      9. Kazutoshi Takahashi, Shinya Yamanaka. A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell Biol. 2016, 17 (3), 183–193. d

      10. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, N 126, P. 663–676.

      11. Yamanaka S. Pluripotency and nuclear reprogramming. Philos. Trans. R Soc. Lond. B Biol. Sci. 2008, N 363, P. 2079–2087.

      12. Tian Z., Guo F., Biswas S., Deng W. Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells. Int. J. Mol. Sci. 2016, V. 17, P. E594.

      13. Samavarchi-Tehrani P., Golipour A., David L., Sung H., Beyer T. A., Datti A., Woltjen K., Nagy A., Wrana J. L. Functional Genomics Reveals a BMP-Driven Mesenchymal-to-Epithelial Transition in the Initiation of Somatic Cell Reprogramming. Cell Stem. Cell. 2010, V. 7, P. 64–77. doi:

      14. Malik N., Rao M. S. A review of the methods for human iPSC derivation. Methods in molecular biology. Clifton. NJ, 2013, N 997, P. 23–33.

      15. Yamanaka S. Elite and stochastic models for induced pluripotent stem cell generation. Nature. 2009, N 460, P. 49–52.

      16. Kulcenty K., Wróblewska J., Mazurek S., Liszewska E., Jaworski J. Molecular mechanisms of induced pluripotency. Contemp. Oncol. (Pozn). 2015, 19 (1A), A22–A29.

      17. David L., Polo J. M. Phases of reprogramming. Stem Cell Research. 2014, V. 12, P. 754–761. doi: j.scr.2014.03.007.

      18. Smith Z. D., Sindhu C., Meissner A. Molecular features of cellular reprogramming and development. Mol. Cell Biol. 2016, V. 17, P. 139–154.

      19. Wang T., Warren S. T., Jin P. Toward pluripotency by reprogramming: mechanisms and application. Protein Cell. 2013, 4 (11), 820–832.

      20. Friedli M., Turelli P., Kapopoulou A., Rauwel B., Castro-Diaz N., Rowe H M., Ecco G., Unzu C., Planet E., Lombardo A., Mangeat B., Wildhaber B. E., Naldini L., Trono D. Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency. Cold Spring Harbor Lab. Press. Genome Res. V. 24, P. 1251–1259.

      21. Maherali N., Ahfeldt T., Rigamonti A., Utikal J., Cowan C., Hochedlinger K. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell. 2008, 11 (3), 340–345.

      22. Soufi A., Zaret K. S. Understanding impediments to cellular conversion to pluripotency by assessing the earliest events in ectopic transcription factor binding to the genome. Cell Cycle. 2013, 12 (10), 1487–1491.

      23. Chen T., Dent S. Y. R. Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat. Rev. Genets. 2014, V. 15, P. 93–106.

      24. Delgado-Olguín Р. Chromatin structure of pluripotent stem cells and induced pluripotent stem cells. Briefings Funct. Genomics. 2011, 10 (1), 37–49.

      25. AlFatah M. A., Gafni O., Weinberger L., Zviran A., Ayyash M., Rais Y., Krupalnik V., Zerbib M., Amann-Zalcenstein D., Maza I., Geula S., Viukov S., Holtzman L., Pribluda A., Canaani E., Horn-Saban Sh., Amit I., Novershtern N., Hanna J. H. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature. 2012, 488 (7411), 409–413.

      26. Bergsmedh A., Donohoe M. E., Hughes R., Hadjantonakis A. Understanding the Molecular Circuitry of Cell Lineage Specification in the Early Mouse Embryo. Genes. 2011, 2 (3), 420–448. doi: 10.3390/ genes2030420

      27. Goyal A., Chavez S. L., Reijo Pera R. A. Generation of human induced pluripotent stem cells using epigenetic regulators reveals a germ cell-like identity in partially reprogrammed colonies. PLoS One. 2013, 8 (12), e82838.

      28. Megyola C. M., Gao Y., Teixeira A. M., Cheng J., Heydari K., Cheng E., Nottoli T., Krause D. S., Lu J., Guo S. Dynamic migration and cell-cell interactions of early reprogramming revealed by high resolution time-lapse imaging. Stem Cells. 2013, 31 (5), 895–905. doi: 10.1002/ stem.1323.

      29. Kida Y. S., Kawamura T., Wei Z., Sogo T., Jacinto S., Shigeno A., Kushige H., Yoshihara E., Liddle Ch., Ecker J. R., Yu R. T., Atkins A. R., Downes M., Evans R. M. ERRs Mediate a Metabolic Switch Required for Somatic Cell Reprogramming to Pluripotency. Cell Stem Cell. 2015. V. 16, P. 547–555.

      30. Hawkins K., Joy S., McKay T. Cell signalling pathways underlying induced pluripotent stem cell reprogramming. World J. Stem Cells. 2014, 6 (5), 620–628. doi: wjsc.v6.i5.620.

      31. Ye X., Weinberg R. A. Epithelial–Mesenchymal Plasticity: A Central Regulator of Cancer Progression. Cell. Trends in Cell Biology. 2015, V. 25, Issue 11, 675–686.

      32. Johnson B. V., Shindo N., Rathjen P. D., Rathjen J., Keough R. A. Understanding pluripotency – how embryonic stem cells keep their options open. Molecular Human Reproduction. 2008, 14 (9), 513–520.

      33. Sha K., Boyer, L. A. The chromatin signature of pluripotent cells, StemBook, ed. In: The Stem Cell Research Community, StemBook. 2009.

      34. Sharma S., Kelly T. K., Jones P. A. Epigenetics in cancer. Carcinogenesis. 2010, 31 (1), 27–36.

      35. Hussein S. M. I., Puri M. C., Tonge P. D., Benevento M., Corso A. J., Clancy J. L., Mosbergen R., Li M., Lee D.-S., Cloonan N., Wood D. L. A., Munoz J., Middleton R., Korn O., Patel H. R., White C. A., Shin J.-Y., Gauthier M. E., Lê Cao K.-A., Kim J.-Il, Mar J. C., Shakiba N., Ritchie W., Rasko J. E. J., Grimmond S. M., Zandstra P. W., Wells C. A., Preiss T., Seo J.-S., Heck A. J. R., Rogers I. M., Nagy A. Genome-wide characterization of the routes to pluripotency. Nature. 2014, N 516, P. 198–206.

      36. Ohnukia M., Tanabea K., Sutoua K., Teramotoa I., Sawamuraa Y., Naritaa M., Nakamuraa M., Tokunagaa Y., Nakamuraa M., Watanabea A., Yamanakaa S., Takahashi K. Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential. PNAS. 2014, 111 (34), 12426–12431.

      37. Santoni F. A., Guerra J., Luban J. HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology. 2012, 9 (111).

      38. Budniatzky І., Gepstein L. Concise Review: Reprogramming Strategies for Cardiovascular Regenerative Medicine: From Induced Pluripotent Stem Cells to Direct Reprogramming. Stem cells translational medicine. 2014, 3 (4), 448–457.

      39.Hirschi K. K., Li S., Roy K. Induced Pluripotent Stem Cells for Regenerative Medicine. Annu Rev Biomed Eng. 2014. V. 16, P. 277–294.

      40 Kumar D., Talluri T. R., Anand T., Kues W. A. Induced pluripotent stem cells: mechanisms, achievements and perspectives in farm animals. World J. Stem Cells. 2015. 7 (2), 315–328. doi: 10.4252/ wjsc.v7.i2.315.

      41. Baghbaderani B. A., Tian X., Neo B. H., Burkall A., Dimezzo T., Sierra G., Zeng X., Warren K., Kovarcik D. P., Fellner T., Rao M. S. cGMP-Manufactured Human Induced Pluripotent Stem Cells Are Available for Pre-clinical and Clinical Applications. Stem Cell Reports. 2015, V. 5, P. 647–659.