Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2017 № 1 YEAST β-MANNANASE ACTIVITY N. V. Borzova, L. D. Varbanets, V. S. Pidgorskyi, O. D. Ianieva
Print PDF

"Biotechnologia Acta" V. 10, No 1, 2017
DOI: 10.15407/biotech10.01.026
Р. 26-33, Bibliography 22, English
Universal Decimal Classification: 577. 152.32

YEAST β-MANNANASE ACTIVITY

N. V. Borzova, L. D. Varbanets, V. S. Pidgorskyi, O. D. Ianieva

Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kiyv

The aim of the research was to determine the mannan-degrading activity of yeasts cultures isolated from various sources and select strains with high β-mannanase activity. As a result of screening of 245 yeast strains, which are the representatives of 7 genera and 14 species, the active producers of extracellular β-mannanase were identified. To increase β-mannanase activity, the cultures were grown under submerged conditions using guar gum galactomannan as a carbon source and an inducer. β-Mannanase activity was determined by dinitrosalicylic method. The most active biosynthetic species were Cryptococcus albidus, C. gastricus, C. magnus, C. terreus, C. laurentii, Saccharomyces cerevisiae, Williopsis californica, Metschnikowia pulcherrima, Pichia anomala and P. guilliermondii. The activity in culture supernatant was ranged from 0.2 to 75 U/ml. α-Galactosidase activity was found in two strains (Debaryomyces polymorphus UCM Y-152 and Debaryomyces hansenii var. fabryi UCM Y-2400). None of the tested cultures demonstrated both β-mannanase and α-galactosidase activity, that is, they are unable to attack both the main and side chains of galactomannan.

Key words: yeast, β-mannanase, α-galactosidase, galactomannan.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017

  • References
    • 1. Dhawan S., Kaur J. Microbial mannanases: an overview of production and applications. Crit. Rev. Biotechnol. 2007, 27 (4), 197‒216. https://doi.org/10.1080/07388550701775919

      2. Chauhan P. S., Puri N. Sharma P., Gupta N. Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl. Microbiol. Biotechnol. 2012, 93 (5), 1817‒1830. https://doi.org/10.1007/s00253-012-3887-5

      3. Titapoka S., Keawsompong S., Haltrich D., Nitisinprasert S. Selection and characterization of mannanase-producing bacteria useful for the formation of prebiotic manno-oligosaccharides from copra meal. World J. Microbiol. Biotech. 2008, 24 (8), 1425–1433. https://doi.org/10.1007/s11274-007-9627-9

      4. Mabrouk M., Ahwany A. Production of β-mannanase by Bacillus amylolequifaciens 10A1 cultured on potato peels. Afr. J. Biotech. 2008, 7 (8), 1123‒1128. doi: 10.5897/AJB08.047.

      5. Lin S. S., Dou W. F., Xu H. Y., Li H. Z., Xu Z. H., Ma Y. H. Optimization of medium composition for the production of alkaline beta-mannanase by alkaliphilic Bacillus sp. N16-5 using response surface methodology. Appl Microbiol. Biotechnol. 2007, 75 (5), 1015–1022. Epub 2007 Mar 15. https://doi.org/10.1007/s00253-007-0907-y

      6. Adebayo-Tayo B., Elelu T., Akinola G., Oyiloye A. Screening and production of mannose by Bacillus strains isolated from fermented food condiments. Innovative Romanian Food Biotech. 2013, V. 13, P. 53–62.

      7. Kim D. Y., Ham S. J., Lee H. J., Kim Y. J., Shin D. H., Rhee Y. H., Son K. H., Park H. Y. A highly active endo-β-1,4-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Enzyme Microb Technol. 2011, 48 (4–5), 365–370. https://doi.org/10.1016/j.enzmictec.2010.12.013

      8. Olaniyi O. O., Arotupin D. J. Isolation and screening of mannanase producing bacteria from agricultural wastes. British Microb. Res. J. 2013, 3 (4), 654–663. https://doi.org/10.9734/BMRJ/2013/4221

      9. Kataoka N., Tokiwa Y. Isolation and characterization of an active mannanase producing anaerobic bacterium, Clostridium tertium KT-5A, from lotus soil. J. Appl. Microbiol. 1998, V. 84, P. 357–367. https://doi.org/10.1046/j.1365-2672.1998.00349.x

      10. Mudau M. M., Setati M. E. Partial purification and characterization of endo-β-1,4-mannanases from Scopulariopsis candida strains isolated from solar salterns. Afr. J. Biotech. 2008, 7 (13), 2279–2285. doi: 10.4314/ajb.v7i13.58977.

      11. Bhoria P., Singh G. Optimization of mannanase production from Streptomyces sp. PG-08-03 in submerged fermentation. BioResources. 2009, 14 (3), 1130–1138.

      12. Sae-Leen N. The production of fungal mannanase, cellulase and xylanase using palm kernel meal as a substrate. Walailak J. Sci. Tech. 2007, 4 (1), 67–82.

      13. Olaniyi O. O., Igbe F. O., Ekundayo T. C. Optimization studies on mannanase production by Trichosporonoides oedocephalis in submerged state fermentation J. Biotech. Pharm. Res. 2013, 4 (7), 110–116.

      14. Norita S. M., Rosfarizan M., Ariff A. B. Evaluation of the activities of concentrated crude mannan-degrading enzymes produced by Aspergillus niger. Malaysian J. Microbiol. 2010, V. 6, P. 171–180.

      15. Blibech M., Ghorbel R. E., Chaari F., Dammak I., Bhiri F., Neifar M., Chaabouni S. E. Improved mannanase production from Penicillium occitanis by fed-batch fermentation using acacia seeds. ISRN Microbiol. 2011, 938347. https://doi.org/10.5402/2011/938347

      16. Eneyskaya E. V., Sundqvist G., Golubev A. M., Batullin F. M., Ivanen D. R., Shabalin K. A., Brumer H., Kulminskaya A. A. Transglycosylating and hydrolytic activities of the β-mannosidase from Trichoderma reesei. Biochimie. 2009, 91 (5), 632–638. https://doi.org/10.1016/j.biochi.2009.03.009

      17. Miller G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 1959, V. 31, P. 426–428. https://doi.org/10.1021/ac60147a030

      18. Chaplin M. E., Kennedy J. E. Carbohydrate analysis. Oxford: Washington: IRL Press. 1986, 228 p.

      19. Kremnicky L., Slavikova E., Mislovicova D., Biely P. Production of extracellular beta-mannanases by yeasts and yeast-like microorganisms. Folia Microbiol. (Praha). 1996, 41 (1), 43–47. https://doi.org/10.1007/BF02816339

      20. Bhadra B., Rao R. S., Singh P. K., Sarkar P. K., Shivaji S. Yeasts and yeast-like fungi associated with tree bark: diversity and identification of yeasts producing extracellular endoxylanases. Curr. Microbiol. 2008, 56 (5), 489–494. https://doi.org/10.1007/s00284-008-9108-x

      21. Borzova N. V., Varbanets L. D., Kurchenko I. M., Nakonechna L. T. Screening of mannane-degrading enzymes. Microbiol. Zh. 2016, 78 (5), 21–29. (In Russian).

      22. Malgas S., van Dyk J. S., Pletschke B. I. A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. World J. Microbiol. Biotechnol. 2015, 31 (8), 1167–1175. https://doi.org/10.1007/s11274-015-1878-2