Biotechnologia Acta


  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2017 № 1 DOMESTIC BUTANOL-PRODUCING STRAINS OF THE Clostridium GENUS O. O. Tigunova, N. Ye. Beiko, H. S. Andriiash, S. H. Pryiomov, S. M. Shulga
Print PDF

"Biotechnologia Acta" V. 10, No 1, 2017
DOI: 10.15407/biotech10.01.034
Р. 34-42, Bibliography 54, English
Universal Decimal Classification: 579.222


O. O. Tigunova, N. Ye. Beiko, H. S. Andriiash, S. H. Pryiomov, S. M. Shulga

«Institute of Food biotechnology and genomics of the National Academy of Sciences of Ukraine», Kyiv

The aim of the work was to summarize the results of own research concerning obtaining butanol producing strains of Clostridium genus, to identify them by physiological, morphological and genetic methods. Further study of characteristics and biological features of the strains, and various approaches in biotechnological process of butanol production are discussed. The work includes methods to increase butanol accumulation by producer strains. Perspectives of using chemical mutagenesis in Clostridia as a method of increasing butanol production are considered. The feasibility of using non-food raw material as a substrate for fermentation is discussed. Different methods of pretreatment and their impact on the accumulation of butanol in the liquid medium are compared. Butanol accumulation is shown to increase significantly if the synthesis precursors are added as components of enzymatic medium, and the “reverse bard” is used to reduce waste production without affecting the level of butanol synthesis. The problem of conservation of producing strains is given, and protective medium for microorganisms during the freeze-drying is defined.

Key words: butanol, butanol-producing strains of the Clostridium genus.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017

  • References
    • 1. Abd-Alla M. H., Zohri A.-N. A., El-Enany A.-W. E., Ali S. M. Acetone-butanol-ethanol production from substandard and surplus dates by Egyptian native Clostridium strains. Anaerobe. 2015, V. 32, P. 77–86.

      2. Menon N., Paszotor A., Menon B. R. K., Kallio P., Fisher K., Akhtar M. K., Leys D., Jones P. R., Scrutton N. S. A microbial platform for renewable propane synthesis based on a fermentative butanol pathway. Biotechnol. Biofuels. 2015, 8 (61), 1–12.

      3. Linggang S., Phang L. Y., Wasoh H., Abd-Aziz S. Acetone-butanol-ethanol production by Clostridium acetobutylicum ATCC 824 using sago pith residues hydrolysate. BioEnergy Res. 2013, 6 (1), 321–328.

      4. Sreekumar S., Baer Z. C., Pazhamalai A., Gunbas G., Grippo A., Blanch H. W., Clark D. S., Toste D. F. Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels. Nat. Prot. 2015, V. 10, P. 528–537.

      5. DeJaco R. F., Bai P., Tsapatsis M., Siepmann J. I. Absorptive separation of 1-butanol from aqueous solutions using MFI- and FER- type zeolite frameworks: a Monte Carlo study. Langmuir. 2016, 32 (8), 2093–2101.

      6. All Fin. Industrial scale bio-butanol production w/clever co-processing. 2011. Available at:

      7. Solecki M., Scodel A., Epstein B. Advanced biofuel market report 2013. Capacity through 2016. California, SF, Environm. Entrepreneus. 2013. Available at:

      8. Shang-Tian Y. Final Report: A novel fermentation process for butyric acid and butanol production from plant biomass. 2005. Available at:

      9. Bruant G., Levesque M.-J., Peter C., Guiot S. R., Masson L. Genomic analysis of carbone monoxide utilization and butanol production by Clostridium carboxidivorans Stain p7T. Plos. ONE. 2010, 5 (9), 1–12.

      10. Lee S. Y., Park J. H., Jang S. H., Nielsen L. K., Kim J., Jung K. S. Fermentative butanol production by Clostridia. [Review]. Biotechnol. Bioeng. 2008, 101 (2), 209–228.

      11. Rawey D. E. Butanol: The other alternative fuel. Agriculture Biofuels: Technol. Sustainabil. Profitabil. 2007, P. 137–147.

      12. Mitchell W. J. Biology and physiology. In: Clostridia, Biotechnology and medical application. In Willey-VCH, Weinheim. 2001, P. 49–104.

      13. Jones D. T., Rogers P., Gottschalk G. Acetone-butanol fermentation revisited. Microbiol. Rev. 1986, 50 (4), 484–524.

      14. Durre P. Fermentative butanol production. Ann. New York Acad. Sci. 2008, N 1125, P. 353–362.

      15. Mitchell W. L. Physiology of carbohydrate to solvent conversion by clostridia. Appl. Microbiol. Physiol. 1998, V. 39, P. 31–130.

      16. Volesky B., Mulchandani A., Williams J. Biochemical production of industrial solvents (acetone-butanol-ethanol) from renewable resources. Ann. N. Y. Acad. Sci. 1981, N 369, P. 205–218.

      17. Sliusarenko T. P. Laboratorni praktykum po mykrobyolohyy pyshchevkh proyzvodstv. Yzdatelstvo trete pererabotannoe y dopolnenoe. Moskwa: «Lehkaya i pishchevaya promyshlennost». 1984, 208p. (In Russian).

      18. Tigunova O. O., Shulga S. M. New producer strains of biobutanol. I. Isolation and identification. Biotechnol. acta. 2013, 6 (1), 97–104. (In Ukrainian).

      19. Lopez-Contreras A. M. Utilization of lignocellulosic substrates by solvent-producing Clostridia. PhD thesis Wageningen University, Wageningen, The Netherlands. 2003, 144 p.

      20. Kratkyi opredelytel bakteryi Berhy. Pod red. Dzh. Khoulta. Moskwa: Mir. 1980, 495 p. (In Russian).

      21. Jonson L. J., Toth J., Santiwatanakul S., Chen J. S. Cultures of “Clostridium acetobutylicum” from Various Collections Comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other Distinct Types Based on DNA-DNA Reassociation. Int. J. Syst. Bact. 1997, 47 (2), 420–424.

      22. Keis S., Bennett C. F., Ward K. V., Jones D. T. Taxonomy and phylogeny of industrial solvent-producing clostridia. J. System. Bacteriol. 1995, 45 (4), 693–705.

      23. Wilkinson S. R., Young M., Goodacre R., Morris J. G., Farrow J. A. E., Collins M. D. Phenotypic and genotypic differences between certain strains of Clostridium acetobutylicum. FEMS Microbiol. Lett. 1995, V. 125, P. 199–204.

      24. Wilson K. Preparation of genomic DNA from bacteria. Curr. Prot. Mol. Biol. 2001, 2.4.1–2.4.5.

      25. Priomov S. G., Tigunova O. O. Phylogenetic analysis of butanol producing strains compared 16S RRNA gene sequence. Elektronyi zhurnal «Naukovi dopovidi NUBiP Ukrainy» № 57 (Hruden), 2015. Available at: (In Ukrainian).

      26. Xiao H., Gu Y., Ning Y., Mitchell W. J., Jiang W., Yang S. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Appl. Environ. Microbiol. 2011, 77 (22), 7886–7895.

      27. Sivagnanam K., Raghavan V. G. S., Shah M. Characterization of Clostridium acetobutylicum protein interaction net­work from butanol fermentation. Appl. Environ. Microbiol. 2004, 70 (9), 5238–5243.

      28. López-Contreras A. M., Gabor K., Martens A. A., Renckens B. A., Claassen P. A., Van Der Oost J., De Vos W. M. Substrate-induced production and secretion of cellulases by Clostridium acetobutylicum. Appl Environ. Microbiol. 2004, 70 (9), 5238–5243.

      29. Andrade J. C., Vasconcelos I. Continuous cultures of Clostridium acetobutylicum: culture stability and low-grade glycerol utilisation. Biotech. Lett. 2003, 25 (2), 121–125.

      30. Al-Shorgani N. K. N., Kalil M. S., Yusoff W. M. W. The effect of different carbon sources on biobutanol production using Clostridium saccharoperbutylacetonicum Nl-4. Biotechnology. 2011, 10 (3), 280–285.

      31. Biebl H. Fermentation of glycerol by Clostridium pasteurianum – bath and continuous culture studies. J. Ind. Microbiol. Biotechnol. 2001, 27 (1), 18–26.

      32. Xiao H., Li Z., Jiang Y., Yang Y., Jiang W., Gu Y., Yang S. Metabolic engineering of D-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid. Metab. Eng. 2012, 14 (5), 569–578.

      33. López-Contreras A. M., Gabor K., Martens A. A., Renckens B. A., Claassen P. A., Van Der Oost J., De Vos W. M. Clostridium beijerinckii cells expressing Neocallimastix patriciarum glycoside hydrolases show enhanced lichenan utilization and solvent production. Appl. Environ. Microbiol. 2001, 67 (11), 5127–5133.

      34. Watsom J. E. Pentose sugar utilisation in Clostridium beijerinckii NCIMB 8052 for biobutanol production: genetic and physiological studies. A thesis submitted in partial fulfilment of the requirements of Edinburgh Napier University, for award of Doctor of Philosophy. 2012, 229 p.

      35. Tigunova O. O., Shulga S. M. New producer strains of biobutanol. ІІ. Renewable lignocellulose fermentation. Biotechnol. acta. 2014, 7 (4), 54–60. (In Ukrainian).

      36. Tіgunova O. O., Shulga S. M. Using by mutant strains C. acetobutylicum ligno-cellulosic material as a substrate. Microbiol. Biotechnol. 2015, V. 3, P. 35–44. (In Ukrainian).

      37. Morgan C. A., Herman N., White P. A., Vesey G. Preservation of micro-organisms by drying; a review. J. Microbiol. Meth. 2006, 66 (2), 183–193.

      38. Prakash O., Nimonkar Y., Shouche Y. S. Practice and prospects of microbial preservation. FEMS Microbiol. Lett. 2013, 339 (1), 1–9.

      39. Tigunova O. O., Beiko N. E., Andriiash A. S., Priymov S. G., Shulga S. M. Lyophilization effect on productivity of butanol-producing strain. Biotechnol. acta. 2016, 9 (4), 24–29.

      40. Kwon J. H., Kang H., Sang B.-I., Kim Y., Min J., Mitchell R. J., Lee J. H. Feasibility of a facile butanol bioproduction using planetary mill pretreatment. Biores. Technol. 2016, N 199, P. 283–287.

      41. Ezeji T., Qureshi N., Blaschek H. P. Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechn. Bioeng. 2007, 27 (6), 1460–1469.

      42. Marchal R., Ropars M. Vandecasteele J. P. Conversion into acetone and butanol of lignocellulosic substrates pretreated by steam explosion. Biotechnol. Lett. 1986, V. 8, P. 365–370.

      43. Maddox I. S., Qureshi N., Gutierrez N. A. Production of n-butanol by fermentation of wood hydrolysate. Biotechnol. Lett. 1983, V. 5, P. 175–178.

      44. Lopez-Contreras A. M., Claassen P. A. M., Mooibroek A., de Vos W. M. Utilisation of saccharides in extruded domestic organic waste by Clostridium acetobutylicum ATCC 824 to produce acetone, butanol and ethanol. Appl. Microbiol. Biotechnol. 2000, N 54, P. 162–167.

      45. Galardo R., Alves M., Rodrigues L. R. Modulation of crude glycerol fermentation by Clostridium pasteurianum DSM 525 towards the production of butanol. Biomass Bioen. 2014, N 71, P. 134–143.

      46. Ohmiya K., Sakka K., Kimura T., Morimoto K. Application of microbial genes to recalcitrant biomass utilization and environmental conservation. J. Biosci. Bioeng. 2003, 95 (6), 549–561.

      47. Qureshi N., Li X. L., Hughes S., Saha B. C., Cotta M. A. Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnol. Prog. 2006, 22 (3), 673–680.

      48. Campos E. J., Qureshi N., Blaschek H. P. Production of acetone butanol ethanol from degermed corn using Clostridium beijerinckii BA101. Appl. Biochem. Biotechnol. 2002, 98 (100), 553–561.

      49. Medoff M. Conversion system for biomass. Xyleco Inc. International patent EP2049674 A2. April 22, 2009.

      50. Li C., Knierim B., Manisseri C., Arora R., Scheller H. V., Auer M., Vogel K. P., Simmons B. A., Singh S. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Biores. Technol. 2010, N 101, P. 4900–4906.

      51. Arora R., Manisseri C., Li C., Ong M. D., Sheller H. V., Vogel K., Simmons B. A., Sing S. Monitoring and analyzing process streams towards understanding ionic liquid pretreatment of switchgrass (Panicum virgatum L.). Bioenerg. Res. 2010, V. 3, P. 134–145.

      52. Zhao H., Baker G. A., Cowins J. V. Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids. Biotechnol. Progr. 2010, 26 (1), 127–133.

      53. Tigunova O. O., Beiko N. E., Kamenskyh D. S., Tkachenko T. V., Yevdokymenko V. O., Kashkovskiy V. I., Shulga S. M. Lignocellulosic biomass after explosive autohydrolysis as substrate for butanol obtaining. Biotechnol. acta. 2016, 9 (4), 28–34.

      54. Tigunova O. O., Shulga S. M. New producer strains of biobutanol. ІІI. Methods increased accumulation of butanol from switchgrass Panicum virgatum L. biomass. Biotechnol. acta. 2015, 8 (4), 65–68. (In Ukrainian).





Additional menu

Site search

Site navigation

Home Archive 2017 № 1 DOMESTIC BUTANOL-PRODUCING STRAINS OF THE Clostridium GENUS O. O. Tigunova, N. Ye. Beiko, H. S. Andriiash, S. H. Pryiomov, S. M. Shulga

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
for information: