Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2017 № 1 SYNTHESIS AND CHARACTERIZATION OF POLY(LACTIC-CO-GLYCOLIC-ACID) MICROPARTICLES LOADED WITH FOOT-AND-MOUTH DISEASE VIRUS 40–60 SYNTHETIC PEPTIDE Z. Mustafaeva
Print PDF

"Biotechnologia Acta" V. 10, No 1, 2017
https://doi.org/10.15407/biotech10.01.052
Р. 52-60, Bibliography 41, English
Universal Decimal Classification: 57.065.38

SYNTHESIS AND CHARACTERIZATION
OF POLY(LACTIC-CO-GLYCOLIC-ACID) MICROPARTICLES
LOADED WITH FOOT-AND-MOUTH DISEASE VIRUS
40–60 SYNTHETIC PEPTIDE

Z. Mustafaeva

Yildiz Technical University, Chemical and Metallurgy Faculty, Istanbul, Turkey

The aim of the research was to synthesize and characterize the poly (lactic-co-glycolic-acid) microparticles loaded with foot-and-mouth disease virus 40-60 synthetic peptide. Single emulsion solvent evaporation method was used for the production of microparticles with theree diferent (5; 10 and 15 mg) peptide amounts and obtained microparticles were characterized by using yield reaction, encapsulation efficiency, drug loading, particle size, polydispersity index, and zeta potential.

Key words: virus of the foot-and-mouth disease, poly (lactic-co-glycolic-acid) microparticles.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017

  • References
    • 1. King D. J., Freimanis G. L., Orton R. J., Waters R. A., Haydon D. T., King D. P. Investigating intra-host and intra-herd sequence diversity of foot-and-mouth disease virus. Infect. Genet. Evolu. 2016, V. 44, P. 286–292. https://doi.org/10.1016/j.meegid.2016.07.010

      2. Mansuroglu B., Mustafaeva Z. Characterization of water-soluble conjugates of polyacrylic acid and antigenic peptide of FMDV by size exclusion chromatography with quadruple detection. Mat. Sci. Engin. C-Materials for Biological Applications. 2012, 32 (2), 112–118. https://doi.org/10.1016/j.msec.2011.10.004

      3. Özdemir Z. Ö., Karahan M., Karabulut E., Mustafaeva Z. Characterization of Foot-and-Mouth Disease Virus's Viral Peptides with LC-ESI-MS. J. Chem. Soc. Pakistan. 2010, 32 (4), 531–536.

      4. Beck E., Feil G., Strohmaier K. The molecular basis of the antigenic variation of foot-and-mouth disease virus. EMBO J. 1983, 2 (4), 555.

      5. Diaz-San Segundo F., Medina G. N., Stenfeldt C., Arzt J., de los Santos T. Foot-and-mouth disease vaccines. Vet. Microbiol. 2016. doi: 10.1016/j.vetmic.2016.12.018. https://doi.org/10.1016/j.vetmic.2016.12.018

      6. Alkan M., Çokçalışkan C., Bulut A. N., Arslan A., Uzunlu E., Gürcan İ. S. Determination of the best vaccination age of calves in the presence of maternal antibodies to foot and mouth disease under natural conditions. Vaccine Rep. 2016,V. 6, P. 44–49. https://doi.org/10.1016/j.vacrep.2016.09.001

      7. Mansuroglu B. Improving of biohybrid and biomimicking polymer-peptide conjugates: (Doctoral dissertation); Available from https://tez.yok.gov.tr/UlusalTezMerkezi/ 2007 (Thesis No:213516).

      8. Zhang L., Zhang J., Chen H., Zhou J., Ding Y., Liu Y. Research in advance for FMD novel vaccines. Virol. J. 2011, 8 (1), 1. https://doi.org/10.1186/1743-422X-8-268

      9. Grubman M. J. New approaches to rapidly control foot-and-mouth disease outbreaks. Exp. R. Anti-infect. Ther. 2003, 1 (4), 579–586.

      10. Rodriguez L. L., Gay C. G. Development of vaccines toward the global control and eradication of foot-and-mouth disease. Exp. Rev. Vaccines. 2011, 10 (3), 377–387. https://doi.org/10.1586/erv.11.4

      11. Derman S., Kizilbey K., Mansuroglu B., Mustafaeva Z. Synthesis and characterization of canine parvovirus (CPV) VP2 W-7L-20 synthetic peptide for synthetic vaccine. Fresen Environ. Bull. 2014, 23 (2A), 558–566.

      12. Arnon R. Synthetic peptides as the basis for vaccine design. Mol. Immunol. 1991, 28 (3), 209–215. https://doi.org/10.1016/0161-5890(91)90063-P

      13. O’Hagan D. T., Singh M. Microparticles as vaccine adjuvants and delivery systems. Exp. Rev. Vaccines. 2003, 2 (2), 269–283. https://doi.org/10.1586/14760584.2.2.269

      14. Azmi F., Ahmad Fuaad A. A. H., Skwarczynski M., Toth I. Recent progress in adjuvant discovery for peptide-based subunit vaccines. Human Vaccines Immunotherapeut. 2014, 10 (3), 778–796. https://doi.org/10.4161/hv.27332

      15. Oyewumi M. O., Kumar A., Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Exp. Rev. Vaccines. 2010, 9 (9), 1095–1107. https://doi.org/10.1586/erv.10.89

      16. Derman S., Mustafaeva Z. Particle size and zeta potential investigation of synthetic peptide-protein conjugates/Sentetik peptid-protein konjugatlarının parçacık boyutu ve zeta potensiyel analizi. Turkish J. Biochem. 2015, 40 (4), 282–289. https://doi.org/10.1515/tjb-2015-0014

      17. Mansuroğlu B., Derman S., Kızılbey K., Mustafaeva Z. Investigation of Protein and Polymer as a Carrier on Immune System. Intern. J. Nat. Engin. Sci. 2009, 3 (2), 32–35.

      18. Derman S., Kizilbey K., Mansuroglu B., Mustafaeva Z. Poly (N-Vinyl-2-Pyrrolidone-co-Acrylic Acid)-Bovine Serum Albumin Complex Formation Studied by HPLC and UV/Vis Spectroscopy. Roman. Biotechnol. Lett. 2012, 17 (4), 7408.

      19. Kabanov V. A. From synthetic polyelectrolytes to polymer-subunit vaccines. Pure Appl. Chem. 2004, 76 (9), 1659–1677. https://doi.org/10.1351/pac200476091659

      20. Zaman M., Simerska P., Toth I. Synthetic polyacrylate polymers as particulate intranasal vaccine delivery systems for the induction of mucosal immune response. Current Drug Deliv. 2010, 7 (2), 118–124. https://doi.org/10.2174/156720110791011846

      21. Kabanov V. A. Synthetic membrane active polyelectrolytes in design of artificial immunogens and vaccines. Macromolecular Symposia, 1986. https://doi.org/10.1002/masy.19860010110

      22. Topuzogullari M., Koc R. C., Isoglu S. D., Bagirova M., Mustafaeva A. Z., Elcicek S., Oztel O. N., Baydar S. Y., Ates S. C., Allahverdiyev A. M. Conjugation, characterization and toxicity of lipophosphoglycan-polyacrylic acid conjugate for vaccination against leishmaniasis. J. Biomed. Sci. 2013, 20 (1), 35. https://doi.org/10.1186/1423-0127-20-35

      23. Singh M., Chakrapani A., O’Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. Exp. Rev. Vaccines. 2007, 6 (5), 797–808. https://doi.org/10.1586/14760584.6.5.797

      24. Derman S., Kızılbey K., Mustafaeva Z. Polymeric nanoparticles. Sigma J. Engin. Nat. Sci. 2013, V. 31, P. 109–122.

      25. Derman S. Caffeic acid phenethyl ester loaded PLGA nanoparticles: effect of various process parameters on reaction yield, encapsulation efficiency, and particle size. J. Nanomater. 2015, 16 (1), 318. https://doi.org/10.1155/2015/341848

      26. Arasoglu T., Derman S., Mansuroglu B. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods. Nanotechnology. 2015, 27 (2), 025103. https://doi.org/10.1088/0957-4484/27/2/025103

      27. Arasoglu T., Mansuroglu B., Derman S., Gumus B., Kocyigit B., Acar T., Kocacaliskan I. Enhancement of Antifungal Activity of Juglone (5-Hydroxy-1, 4-naphthoquinone) Using a Poly (d, l-lactic-co-glycolic acid)(PLGA) Nanoparticle System. J. Agricult. Food Chem. 2016, 64 (38), 7087–7094. https://doi.org/10.1021/acs.jafc.6b03309

      28. Derman S., Mustafaeva Z., Abamor E. S., Bagirova M., Allahverdiyev A. Preparation, characterization and immunological evaluation: canine parvovirus synthetic peptide loaded PLGA nanoparticles. J. Biomed. Sci. 2015, 22 (1), 89. https://doi.org/10.1186/s12929-015-0195-2

      29. Sen G. P. Poly (DL-lactic-co-glycolic acid) microparticles and synthetic peptide drug conjugate for anti-cancer drug delivery (Master Thesis) Available from https://tez.yok.gov.tr/UlusalTezMerkezi/ 2009 (Thesis No: 255341).

      30. Bala I., Hariharan S., Kumar M. R. PLGA nanoparticles in drug delivery: the state of the art. Crit. Rev.™ Therapeut. Drug Carrier Syst. 2004, 21 (5), 387–422. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i5.20

      31. Chong C. S., Cao M., Wong W. W., Fischer K. P., Addison W. R., Kwon G. S., Tyrrell D. L., Samuel J. Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J. Controll. Release. 2005, 102 (1), 85–99. https://doi.org/10.1016/j.jconrel.2004.09.014

      32. Dixit S., Singh S. R., Yilma A. N., Agee II R. D., Taha M., Dennis V. A. Poly (lactic acid)–poly (ethylene glycol) nanoparticles provide sustained delivery of a Chlamydia trachomatis recombinant MOMP peptide and potentiate systemic adaptive immune responses in mice. Nanomed.: Nanotechnol. Biol. Med. 2014, 10 (6), 1311–1321. https://doi.org/10.1016/j.nano.2014.02.009

      33. Fairley S. J., Singh S. R., Yilma A. N., Waffo A. B., Subbarayan P., Dixit S., Taha M. A., Cambridge C. D., Dennis V. A. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: a desirable candidate nanovaccine. Intern. J. Nanomed. 2013, V. 8, P. 2085.

      34. Ma W., Chen M., Kaushal S., McElroy M., Zhang Y., Ozkan C., Bouvet M., Kruse C., Grotjahn D., Ichim T. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses. Intern. J. Nanomed. 2012, V. 7, P. 1475. https://doi.org/10.2147/IJN.S29506

      35. Primard C., Poecheim J., Heuking S., Sublet E., Esmaeili F., Borchard G. Multifunctional PLGA-based nanoparticles encapsulating simultaneously hydrophilic antigen and hydrophobic immunomodulator for mucosal immunization. Mol. Pharmaceut. 2013, 10 (8), 2996–3004. https://doi.org/10.1021/mp400092y

      36. Silva A., Rosalia R., Sazak A., Carstens M., Ossendorp F., Oostendorp J., Jiskoot W. Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: Low-burst release is crucial for efficient CD8(+) T cell activation. Europ J. Pharmaceut. Biopharmaceut. 2013, 83 (3), 338–345. https://doi.org/10.1016/j.ejpb.2012.11.006

      37. Taha M. A., Singh S. R., Dennis V. A. Biodegradable PLGA85/15 nanoparticles as a delivery vehicle for Chlamydia trachomatis recombinant MOMP-187 peptide. Nanotechnology. 2012, 23 (32), 325101. https://doi.org/10.1088/0957-4484/23/32/325101

      38. Xiao X., Zeng X., Zhang X., Ma L., Liu X., Yu H., Mei L., Liu Z. Effects of Caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma. Intern. J. Nanomed. 2013, V. 8, P. 4553.

      39. Pawar D., Mangal S., Goswami R., Jaganathan K. Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Europ. J. Pharmaceut Biopharmaceut. 2013, 85 (3), 550–559. https://doi.org/10.1016/j.ejpb.2013.06.017

      40. Manish M., Rahi A., Kaur M., Bhatnagar R., Singh S. A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge. PLOS ONE. 2013, 8 (4), e61885. https://doi.org/10.1371/journal.pone.0061885

      41. Jaganathan K., Vyas S. P. Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine. 2006, 24 (19), 4201–4211. https://doi.org/10.1016/j.vaccine.2006.01.011