Biotechnologia Acta


  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2017 № 1 PT (II) AND PD (II) COMPLEXES INFLUENCE ON SPHEROIDS GROWTH OF BREAST CANCER CELLS A. A. Bilyuk, O. V. Storozhuk, O. V. Kolotiy, H. H. Repich, S. I. Orysyk, L. V. Garmanchuk
Print PDF

"Biotechnologia Acta" V. 10, No 1, 2017
Р. 61-67, Bibliography 17, English
Universal Decimal Classification: 577.112:616.128


A. A. Bilyuk 1, O. V. Storozhuk 1, O. V. Kolotiy 1, H. H. Repich 2, S. I. Orysyk 2, L. V. Garmanchuk 1

1 Educational and Scientific Centre “Institute of Biology and Medicine” of Taras Shevchenko National University of Kyiv, Ukraine
2 Vernadskyi Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv

The aim of the research was to examine the changes in multi-cellular tumor spheroid growth, adhesion properties and gamma-glutamintranspeptidasic activity in model systems of human breast cancer multicellular spheroid MCF-7 under the influence of Pt(ІІ) and Pd(ІІ) π-complexes with allyl-containing thioureas. Comparing with cisplatin, Pt(II) and Pd(II) complexes reduce gamma-glutamintranspeptidasic activity, increase adhesive properties in model system of solid tumor and inhibit the multicellular spheroids’ growth. All changes prove the importance of further investigation and analysis of these compounds as potential analogues of anticancer drugs that possibly do not cause resistance and reduce the level of metastasis in breast cancer.

Key words: Pt(ІІ) and Pd(ІІ) π-complexes, gamma-glutamintranspeptidase, adhesive properties, multi-cellular tumor spheroids.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017

  • References
    • 1. Rosenberg B., Van Camp L., Trosko J. E., Mansour V. H., Platinum compounds: a new class of potent antitumor agents. Nature. 1969, V. 222, P. 385–686.

      2. Aoki K., Murayama K. Nucleic acid-metal ion interactions in the solid state. Met. Ions Life Sci. 2012, V. 10, P. 43–102. doi: 10.1007/978-94-007-2172-2_2.

      3. Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer. 2007, V. 7, P. 573–584.

      4. Frezza M., Hindo S., Chen D., Davenport A., Schmitt S., Tomco D.. Dou Q. P. Novel metals and metal complexes as platforms for cancer therapy. Curr. Pharm. Des. 2010, V. 16, P. 1813–1825. PMID: 20337575.

      5. Repich H. H., Orysyk V. V., Palchykovska L. G., Orysyk S. I., Zborovskii Yu. L., Vasylchenko O. V., Storozhuk O. V., Biluk A. A., Nikulina V. V., Garmanchuk L. V., Pekhnyo V. I., Vovk M. V. Synthesis, spectral characterization of novel Pd(II), Pt(II) π-coordination compounds based on N-allylthioureas. Cytotoxic properties and DNA binding ability. J. Inorg. Biochem. 2017, 168, P. 98–106.

      6. Che C. M., Siu F. M. Metal complexes in medicine with a focus on enzyme inhibition. Curr. Opin. Chem. Biol. 2010, V. 14, P. 255–261.

      7. Gasser G., Ott I., Metzler-Nolte N. The potential of organometallic complexes in medicinal chemistry. J. Med. Chem. 2011, V. 54, P. 3.

      8. Sedletska Y., Giraud-Panis M. J., Malinge J. M. Cisplatin is a DNA-damaging antitumour compound triggering multifactorial biochemical responses in cancer cells: importance of apoptotic pathways. Curr. Med. Chem. Anticancer Agents. 2005, V. 5, P. 251–265. PMID: 15992353.

      9. Kartalou M., Essigmann J. M. Mechanisms of resistance to cisplatin. Mutat. Res. 2001, V. 478, P. 23–43. PMID: 11406167.

      10. Brozovic A., Ambriović-Ristov A., Osmak M. The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Crit. Rev. Toxicol. 2010, 40 (4), 347–359.

      11. Pearson R. G. Antisymbiosis and the trans effect. Inorg. Chem. 1973, 12 (3), 712–713.

      12. Kim J. B. Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol. 2005, V. 15, P. 365–377. PMID: 15975824.

      13. Girard Y. K., Wang C., Ravi S., Howell M. C., Mallela J. et al. A 3D fibrous scaffold inducing tumoroids: a platform for anticancer drug development. PLoS One. 2013, V. 8, P. e75345. doi: 10.1371/journal.pone. 0075345 PMID: 24146752.

      14. McMahon K. M., Volpato M., Chi H. Y., Musiwaro P., Poterlowicz K. et al. Characterization of changes in the proteome in different regions of 3D multicell tumor spheroids. J. Proteome Res. 2012, V. 11, P. 2863–2875.

      15. Huang S. G., Zhang L. L., Niu Q., Xiang G. M., Liu L. L. et al. Hypoxia Promotes Epithelial—Mesenchymal Transition of Hepatocellular Carcinoma Cells via Inducing GLIPR-2. Expression. PLoS One. 2013, V. 8, P. e77497.

      16. Gallardo-Pérez J. C., Rivero-Segura N. A., Marín-Hernández A., Moreno-Sánchez R., Rodríguez-Enríquez S. GPI/AMF inhibition blocks the development of the metastatic phenotype of mature multi-cellular tumor spheroids. Biochim. Biophys. Acta. 2014, V. 1843, P. 1043–1053.

      17.         Burstein H. J., Schwartz R. S. Molecular origins of cancer. New Engl. J. Med. 2008, 358 (5), 527, 2039–2049.


Additional menu

Site search

Site navigation

Home Archive 2017 № 1 PT (II) AND PD (II) COMPLEXES INFLUENCE ON SPHEROIDS GROWTH OF BREAST CANCER CELLS A. A. Bilyuk, O. V. Storozhuk, O. V. Kolotiy, H. H. Repich, S. I. Orysyk, L. V. Garmanchuk

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
for information: