Biotechnologia Acta


  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2016 № 1 INFLUENCE OF CULTIVATION CONDITIONS ON ANTIMICROBIAL PROPERTIES OF Nocardia vaccinii ІMV B-7405 SURFACTANTS Т. P. Pirog, E. V. Panasyuk, L. V. Nikityuk, G. O. Iutinska
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

"Biotechnologia Acta" V. 9, No 1, 2016
Р. 38-47, Bibliography 27, English
Universal Decimal Classification: 873.088.5:661.185


Т. P. Pirog 1, 2, E. V. Panasyuk 1, L. V. Nikityuk 1, G. O. Iutinska 2

1 National University of Food Technologies, Kyiv
2 Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv

The aim of the work was investigation of antimicrobial effect of Nocardia vaccinii ІMV B-7405 surfactants, synthesized in various culture conditions, against phytopathogenic bacteria of genera Pseudomonas, Xanthomonas, and Pectobacterium. The antimicrobial properties of surfactant were determined in suspension culture by Koch method and also by index of the minimum inhibitory concentration. Surfactants were extracted from supernatant of cultural liquid using mixture of chloroform and methanol (2: 1). It has been established that antimicrobial properties of surfactants depend on the nature of the carbon source in the medium (refined vegetable oil, as well as waste oil after frying potatoes and meat, glycerol), the duration of the cultivation (5 and 7 days), the degree of purification of the surfactants (the supernatant of cultural liquid, purified surfactants solution) and the test culture type. The highest antimicrobial activity was exhibited by purified surfactants solutions synthesized by microorganisms on the waste oil after potato frying (decreased survival of pathogenic bacteria by 50–95%), and surfactants formed within 7 days of strain B-7405 ІMV cultivation on all test substrates (minimum inhibitory concentration 7–40 µg/mL, which is several times lower than the surfactant, synthesized for 5 days).

These data are promising for the development of ecologically friendly biopreparations for the regulation of the number of phytopathogenic bacteria.

Key words: Nocardia vaccinii ІMV B-7405, surfactants.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

  • References
    • 1.  Kalyani  R.  Bishwambhar  M.,  Suneetha  V. Recent  potential  usage  of  surfactant  from microbial  origin  in  pharmaceutical  and biomedical  arena:  a  perspective.  Int.  Res.  J. Pharm. 2011, 2 (8), 11–15.

      2.  Baindara  P.,  Mandal  S.  M.,  Chawla  N., Singh  P.  K.,  Pinnaka  A.  K.,  Korpole  S. Characterization of two antimicrobial peptides produced  by  a  halotolerant  Bacillus  subtilis strain  SK.DU.4  isolated  from  a  rhizosphere soil  sample.  AMB  Express.  2013,  3:2.  doi: 10.1186/2191-0855-3-2.

      3.  Mandal  S.  M.,  Barbosa  A.  E.,  Franco  O.  L. Lipopeptides  in  microbial  infection  control: scope  and  reality  for  industry.  Biotechnol. Adv. 2013, 31 (2), 338–345. doi: 10.1016/j.biotechadv.2013.01.004.

      4.  Campos J. M., Stamford T. L., Sarubbo L. A., de Luna J. M., Rufino R. D., Banat I. M. Microbial biosurfactants as additives for food industries. Biotechnol. Prog. 2013, 29 (5), 1097–1108. doi: 10.1002/btpr.1796.

      5.  Sachdev D. P., Cameotra S. S. Biosurfactants in agriculture. Appl. Microbiol. Biotechnol. 2013, 97 (3), 1005–1116. doi: 10.1007/s00253-012-4641-8.

      6.  Pirog  T.  P.,  Konon  A.  D.,  Sofilkanich  A.  P., Iutinskaya  G.  A.  Effect  of  surface-active substances  of  Acinetobacter  calcoaceticus IMV  B-7241,  Rhodococcus  erythropolis IMV  Ac-5017  and  Nocardia  vaccinii  K-8  on phytopathogenic  bacteria.  Appl.  Biochem. Microbiol. 2013, 49 (4), 360–367.

      7.  Marchant  R.,  Banat  M.  I. Biosurfactants: a  sustainable  replacement  for  chemical surfactants.  Biotechnol.  Lett.  2012,  34  (9), 1597–1605.

      8.  Pidhorskyy  V.,  Iutinska  G.,  Pirog  T. Intensification  of  microbial  synthesis technologies. Кyiv: Nauk. dumka. 2010, 327 p. (In Ukrainian).

      9.  Pirog T. P., Voloshina I. N., Ignatenko S. V., Vildanova-Marcishin R. I. Some peculiarities of the synthesis of surface-active compounds in  Rhodococcus  erythropolis  ЕK-1  grown  on hexadecane.  Biotekhnolohiia.  2005,  V.  6, P. 27–35 (In Russian).

      10.  Pirog  T.P.,  Antonyuk  S. I.,  Konon  A.D., Shevchuk  T. A.,  Parfenyuk  S. A.  Influence of  pH  on  synthesis  of  Acinetobacter calcoaceticus  IMV  B-7241  biosurfactants. Microbiol.  J. 2013,  75  (3),  40–48  (In Russian).

      11.  Colla  L.  M.,  Rizzardi  J.,  Pinto  M.  H., Reinehr  C.  O.,  Bertolin  T.  E.,  Costa  J.  A. Simultaneous  production  of  lipases  and biosurfactants  by  submerged  and  solid-state  bioprocesses.  Bioresource  Technol. 2010, 101 (21), 8308–8314. doi: 10.1016/j.biortech.2010.05.086.

      12.  Choi  M.  H.,  Xu  J.,  Gutierrez  M.,  Yoo  T., Cho Y. H., Yoon S. C. Metabolic relationship between  polyhydroxyalkanoic  acid  and rhamnolipid  synthesis  in  Pseudomonas aeruginosa:  comparative  ¹³C  NMR  analysis of  the  products  in  wild-type  and  mutants. J.  Biotechnol.  2011,  151  (1),  30–42. doi: 10.1016/j.jbiotec.2010.10.072

      13.  Sharma D., Singh Saharan B. Simultaneous production  of  biosurfactants  and bacteriocins  by  probiotic  Lactobacillus casei MRTL3. Int. J. Microbiol. 2014. doi: 10.1155/2014/698713.

      14.  Liang T. W., Wu C. C., Cheng W. T., Chen Y. C., Wang  C.  L.,  Wang  I.  L.,  Wang  S.  L. Exopolysaccharides  and  antimicrobial biosurfactants  produced  by  Paenibacillus macerans  TKU029.  Appl.  Biochem. Biotechnol. 2014, 172 (2), 933–950.

      15.  Raza  Z.  A.,  Khan  M.  S.,  Khalid  Z.  M. Evaluation  of  distant  carbon  sources  in biosurfactant  production  by  a  gamma  ray-induced Pseudomonas putida mutant. Proc. Biochemistry. 2007, 42 (4), 686–692.

      16.  Pirog T. P., Konon A. D., Beregovaya K. A., Shulyakova M. A. Antiadhesive properties of  the surfactants of Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Ac-5017, and Nocardia vaccinii IMB B-7405. Microbiology. 2014, 83 (6), 732–739.

      17.  Andrews J. M. Determination of minimum inhibitory  concentrations.  J.  Antimicrob. Chemother. 2001, 48 (1) (Suppl.), 5–16.

      18.  Savary S., Mila A., Willocquet L., Esker P. D., Carisse  O.,  McRoberts  N.  Risk  factors for  crop  health  under  global  change  and agricultural shifts: a framework of analyses using rice in tropical and subtropical Asia as a model. Phytopathology. 2011, 101 (6), 696–709.

      19.  Xu  X.  M.,  Jeffries  P.,  Pautasso  M., Jeger  M.  J.  Combined  use  of  biocontrol agents  to  manage  plant  diseases  in  theory and practice. Phytopathology. 2011, 101 (9), 1024–1031.

      20.  Gvozdyak R. I., Pasichnik L. A., Yakovleva L. M., Moroz S. M., Litvinchuk O. O., Zhitkevich N. V., Khodos S. F., Butsenko L. M., Dankevich L. P., Grinik  I.  V.,  Patyka  V.  F.  Phytopathogenic Bacteria.  Bacterial  Plant  Diseases.  Kyiv: OOO  NVP  Interservis. 2011,  444  p.  (In Ukrainian).

      21.  Krzyzanowska  D.  M.,  Potrykus  M., Golanowska  M.,  Polonis  K.,  Gwizdek-Wisniewska  A.,  Lojkowska  E.,  Jafra  S. Rhizosphere bacteria as potential biocontrol agents  against  soft  rot  caused  by  various Pectobacterium  and  Dickeya  spp.  strains. J. Plant. Pathol. 2012, 94 (2), 267 378. doi: 10.4454/JPP.FA.2012.042.

      22.  Bais H. P., Fall R., Vivanco J. M. Biocontrol of  Bacillus  subtilis  against  infection  of  Arabidopsis roots by Pseudomonas syringae is  facilitated  by  biofilm  formation  and surfactin production. Plant. Physiol. 2004, 134 (1), 307–319.

      23.  Etchegaray  A.,  de  Castro  Bueno  C., de Melo I. S., Tsai S. M., Fiore M. F., Silva-Stenico  M.  E.,  de  Moraes  L.  A.,  Teschke  O. Effect of a highly concentrated lipopeptide extract  of  Bacillus  subtilis  on  fungal  and bacterial cells. Arch. Microbiol. 2008, 190 (6), 611–622.

      24.  Singh  A.  K.,  Rautela  R.,  Cameotra  S.  S. Substrate  dependent  in  vitro  antifungal activity of Bacillus sp. strain AR2. Microb. Cell Fact. 2014, 13:67. doi: 10.1186/1475-2859-13-67.

      25.  Tabbene1  O.,  Kalai1  L.,  Slimene  I.  B., Karkouch  I.,  Elkahoui  S.,  Gharbi  A., Cosette  P.,  Mangoni  M.-L.,  Jouenne  T., Limam  F.  Anti-Candida  effect  of bacillomycin  D-like  lipopeptides  from Bacillus subtilis B38. Microbiol. Lett. 2011, 316  (2),  108–114.  doi:  10.1111/j.1574-6968.2010.02199.x.

      26.  Kim  P.  I.,  Ryu  J.,  Kim  Y.  H.,  Chi  Y.  T. Production  of  biosurfactant  lipopeptides Iturin  A,  fengycin  and  surfactin  A from  Bacillus  subtilis  CMB32  for  control of  Colletotrichum  gloeosporioides.  J. Microbiol.  Biotechnol.  2010,  20  (1), 138–145.

      27.  Cortés-Sánchez Ade J., Hernández-Sánchez H., Jaramillo-Flores  M.  E.  Biological  activity of glycolipids produced by microorganisms: new  trends  and  possible  therapeutic alternatives.  Microbiol.  Res.  2013, 168  (1),  22–32. doi:  10.1016/j.micres.2012.07.002.


Additional menu

Site search

Site navigation

Home Archive 2016 № 1 INFLUENCE OF CULTIVATION CONDITIONS ON ANTIMICROBIAL PROPERTIES OF Nocardia vaccinii ІMV B-7405 SURFACTANTS Т. P. Pirog, E. V. Panasyuk, L. V. Nikityuk, G. O. Iutinska

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
for information: