Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2016 № 1 TEST-SYSTEMS FOR MONITORING OF CORROSION-RELEVANT SULFATE-REDUCING BACTERIA USING REAL-TIME PCR ASSAY D. R. Аbdulina, L. М. Purish, G. А. Iutynska, М. М. Nikitin, A. G. Golikov
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

"Biotechnologia Acta" V. 9, No 1, 2016
https://doi.org/10.15407/biotech9.01.055
Р.
55-63, Bibliography 46, English
Universal Decimal Classification: 579.63:577.29

ENDOGENOUS CYTOKININS IN MEDICINAL BASIDIOMYCETES MYCELIAL BIOMASS

N. P. Vedenicheva, G. A. Al-Maali, N. Yu. Mytropolska, O. B. Mykhaylova, N. A. Bisko, I. V. Kosakivska

Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv

The aim of the research was to study the cytokinins production by medicinal basidial mushrooms. Cytokinins were for the first time identified and quantified in mycelial biomass of six species (Ganoderma lucidum, Trametes versicolor, Fomitopsis officinalis, Pleurotus nebrodensis, Grifola frondosa, Sparassis crispa) using HPLC. Trans- and cis-zeatin, zeatin riboside, zeatin-O-glucoside, isopentenyladenosine, isopentenyladenine were found but only one species (G. lucidum, strain 1900) contained all these substances. The greatest total cytokinin quantity was detected in F. officinalis, strain 5004. S. crispa, strain 314, and F. officinalis, strain 5004, mycelial biomass was revealed to have the highest level of cytokinin riboside forms (zeatin riboside and isopentenyladenosine). The possible connection between medicinal properties of investigated basidiomycetes and of cytokinins is discussed. S. crispa, strain 314, and F. officinalis, strain 5004, are regarded as promising species for developing biotechnological techniques to produce biologically active drugs from their mycelial biomass. As one of the potential technological approaches there is proposed fungal material drying.

Key words: medicinal mushrooms, mycelial biomass, cytokinins.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

  • References
    • 1. Sytnik K. M., Musatenko L. I., Vasjuk V. A., Vedenicheva N. P., Generalova V. N., Martyn G. I., Nesterova A. N. Hormonal complex of plants and fungi. Kyiv: Akademperiodyka. 2003, 186 p. (In Ukrainian).

      2. Hinsch J., Vrabka J., Oeser B., Novák O., Galuszka P., Tudzynski P. De novo biosynthesis of cytokinins in the biotrophic fungus Claviceps purpurea. Environm. Microbiol. 2015, V. 17, P. 2935–2951. doi: 10.1111/1462-2920.12838.

      3. Morrison E. N., Knowles S., Hayward A., Thorn R. G., Saville B. J., Emery R. J. Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis. Mycologia. 2015, V. 107, P. 245–257. doi: 10.3852/14-157.

      4. Kieber J. J., Schaller G. E. Cytokinins. The Arabidopsis Book. 2014. 11:e0168. doi:10.1199/tab.0168.

      5. Vanková R. Cytokinin regulation of plant growth and stress responses. Phytohormones: a window to metabolism, signaling and biotechnological applications. Tran L.-S., Pal S. (Eds.). N. Y., Heidelberg, Dordrecht, London: Springer Science + Business Media. 2014, P. 5580.
      http://dx.doi.org/10.1007/978-1-4939-0491-4_3

      6. Romanov G. A. How do cytokinins affect the cell? Russian J. Plant Physiol. 2009, V. 56, P. 268290. doi: 10.1134/S1021443709020174.

      7. Stirk W. A., Van Staden J. Flow of cytokinins through the environment. Plant Growth Regul. 2010, V. 62, P. 101116. doi: 10.1007/s10725-010-9481-x.

      8. Castillo G., Torrecillas A., Nogueiras C., Michelena G., Sanchez-Bravo J., Acosta M. Simultaneous quantification of phytohormones in fermentation extracts of Botryodiplodia theobromae by liquid chromatography-electrospray tandem mass spectrometry. World J. Microbiol. Biotechnol. 2014, V. 30, P. 19371946. doi: 10.1007/s11274-014-1612-5.

      9. Van Staden J., Nicholson R. I. D. Cytokinins and mango flower malformation II. The cytokinin complement produced by Fusarium moniliforme and the ability of the fungus to incorporate [8–14C] adenine into cytokinins. Physiol. Mol. Plant Pathol. 1989, V. 35, P. 423–431. doi: 10.1016/0885-5765(89)90061-1.

      10. Choi J., Choi D., Lee S., Ryu C.-M., Hwang I. Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci. 2011, V. 16, P. 388–394. doi: 10.1016/j.tplants.2011.03.003.

      11. Spíchal L. Cytokinins – recent news and views of evolutionally old molecules. Funct. Plant Biol. 2012, V. 39, P. 267284. http://dx.doi.org/10.1071/FP11276.

      12. Dua I. S., Jandaik C. L. Cytokinins in two cultivated edible mushrooms. Scientia Horticulturae. 1979, V. 10, P. 301–304. doi: 10.1016/0304-4238(79)90086-4.

      13. Crafts C. B., Miller C. O. Detection and identification of cytokinins produced by mycorrhizal fungi. Plant Physiol. 1974, V. 54, P. 586–588.
      http://dx.doi.org/10.1104/pp.54.4.586

      14. Vedenicheva N. P., Generalova V. N., Bisko N. A., Musatenko L. I., Dudka I. A. Phytohormonal complex of oyster mushrooms. Ukr. Botan. J. 1997, V. 54, P. 266–271. (In Ukrainian).

      15. Özcan B. GA3, ABA and cytokinin production by Lentinus tigrinus and Laetiporus sulphureus fungi cultured in the medium of olive oil mill waste. Turk. J. Biol. 2001, V. 25, P. 453462.

      16. Türker M., Demirel K., Uzun Y., Battal P., Tileklioǧlu B. Determination of phytohormones level in some dried and fresh macrofungi taxa. Phyton – Annales rei Botanicae. 2005, V. 45, P. 145157.

      17. Wasser S. P. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed. J. 2014, V. 37, P. 345356. doi: 10.4103/2319-4170.138318.

      18. Casati S., Ottria R., Baldoli E., Lopez E., Maier J. A. M., Ciuffreda P. Effects of cytokinins, cytokinin ribosides and their analogs on the viability of normal and neoplastic human cells. Anticancer Res. 2011, V. 31, P. 3401–3406.

      19. Kolyachkina S. V., Tararov V. I., Alexeev C. S., Krivosheev D. M., Romanov G. A., Stepanova E. V., Solomko E. S., Inshakov A. N., Mikhailov S. N. N6-substituted adenosines. Cytokinin and antitumor activities. Collect. Czech. Chem. Commun. 2011, V. 76, P. 1361–1378. http://dx.doi.org/10.1135 /cccc2011114.

      20. Molinsky J., Klanova M., Koc M., Beranova L., Andera L., Ludvikova Z., Bohmova M., Gasova Z., Strnad M., Ivanek R., Trneny M., Necas E., Zivny J., Klener P. Roscovitine sensitizes leukemia and lymphoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Leuk Lymphoma. 2013, V. 54, P. 372–380. doi: 10.3109/10428194.2012.710331.

      21. Solomko E. Ph., Mytropolskaya N. Yu. Obtaining of Lentinus edodes (Berk.) Sing. sowing material by deep method. Mycol. Phytopatol. 1994, V. 28, P. 34–39. (In Russian).

      22. Musatenko L., Vedenicheva N., Vasyuk V., Generelova V., Martyn G., Sytnik K. Phytohormones in seedlings of maize hybrids differing in their tolerance to high temperatures. Russian J. Plant Physiol. 2003, V. 50, P. 499–504. doi: 10.1023 /A:1024704303406.

      23. Frébort I., Kowalska M., Hluska T., Frebortova J., Galuszka P. Evolution of cytokinin biosynthesis and degradation. J. Exp. Bot. 2011, V. 62, P. 24312452. doi: 10.1093/jxb/err004.

      24. Schäfer M., Brütting C., Meza-Canales I. D., Großkinsky D. K., Vankova R., Baldwin I. T., Meldau S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J. Exp. Bot. 2015, V. 66, P. 48734884. doi:10.1093/jxb/erv214.

      25. Werner T., Schmülling T. Cytokinin action in plant development. Curr. Opin. Plant Biol. 2009, V. 12, P. 527538. doi: 10.1016/j.pbi.2009.07.002.

      26. Gargano M. L., Zervakis G. I., Venturella G. Cultivation and nutritional value of Pleurotus nebrodensis. Pleurotus nebrodensis, A Very Special Mushroom. Gargano M. L., Zervakis G. I., Venturella G. (Eds.). Bentham Science Publishers. 2013, P. 99–120. doi: 10.2174/97816080580061130101.

      27. Hobbs Ch. Medicinal mushrooms: An exploration of tradition, healing and culture. Santa Cruz: Botanica Press. 1995, 251 p.

      28. Zhang J., Huang C. Study on germplasm characteristics of Pleurotus nebrodensis in China. Int. J. Med. Mushrooms. 2007, V. 9, P. 365. doi: 10.1615/IntJMedMushr.v9.i34.90.

      29. Adachi Y., Okazaki M., Ohno N., Yadomae T. Enhancement of cytokine production by macrophages stimulated with (1-3)-beta-D-glucan, grifolan (GRN), isolated from Grifola frondosa. Biol. Pharm. Bull. 1994, V. 17, P. 1554–1560.
      http://dx.doi.org/10.1248/bpb.17.1554

      30. Wasser S. P., Weis A. L. Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives (review). Int. J. Med. Mushrooms. 1999, V. 1, P. 31–62. doi: 10.1615/IntJMedMushrooms.v1.i1.30.

      31. Wasser S. P. Medicinal mushroom science: History, current status, future trends, and unsolved problems. Int. J. Med. Mushrooms. 2010, V. 12, P. 1–16. doi: 10.4103/2319-4170.138318.

      32. Kwon A. H., Qiu Z., Hashimoto M., Kimura T. Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetis rats. Amer. J. Surgery. 2009, V. 197, P. 503–509. doi: 10.1016/j.amjsurg.2007. 11.021.

      33. Yamamoto K., Inose T., Kimura T., Sugitachi A., Matsuura N. Anti-angiogenic and anti-metastatic effects of beta-1,3-d-glucan purified from Hanabiratake, Sparassis crispa. Biol. Pharmaceut. Bull. 2009, V. 32, P. 503–509.
      http://dx.doi.org/10.1248/bpb.32.259

      34. Yoshikawa K., Kokudo N., Hashimoto T., Yamamoto K., Inose T., Kimura T. Novel phthalate compounds from Sparassis crispa (Hanabiratake), Hanabiratakelide A-C, exhibiting anticancer related activity. Biol. Pharmaceut. Bull. 2010, V. 33, P. 1355–1359.
      http://dx.doi.org/10.1248/bpb.33.1355

      35. Chen X., Hu Z. P., Yang X. X., Huang M., Gao Y. Monitoring of immune responses to a herbal immuno-modulator in patients with advanced colorectal cancer. Int. Immunopharmacol. 2006, V. 6, P. 499–508. doi: 10.1016/j.intimp. 2005.08.026.

      36. Paterson R.R. Ganoderma – a therapeutic fungal biofactory. Phytochemistry. 2006, V. 67, P. 1985–2001. http://dx.doi.org/10.1016/j.phytochem.2006.07.004

      37. Patel S., Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. Biotech. 2012, 2 (1), 1–15. doi: 10.1007/sl13205-011-0036-2.

      38. Schaller G. E., Street I. H., Kieber J. J. Cytokinin and the cell cycle. Curr. Opin. Plant Biol. 2014, V. 21, P. 7–15. doi: 10.1016/j.pbi.2014.05.015.

      39. Voller J., Zatloukal M., Lenobel R., Dolezal K., Béreš T., Kryštof V., Spíchal L., Niemann P., Džubák P., Hajdúch M., Strnad M. Anticancer activity of natural cytokinins: A structure–activity relationship study. Phytochemistry. 2010, V. 71, P. 1350–1359. doi: 10.1016/j.phytochem.2010.04.018.

      40. Castiglioni S., Casati S., Ottria R., Ciuffreda P., Maier J. A. M. N6-isopentenyladenosine and its analogue N6-benzyladenosine induce cell cycle arrest and apoptosis in bladder carcinoma T24 cells. Anti-Cancer Agents Med. Chem. 2013, V. 13, P. 672–678.
      http://dx.doi.org/10.2174/1871520611313040016

      41. Spinola M., Colombo F., Falvella F. S., Dragani T. A. N6-Isopentenyladenosine: A potential therapeutic agent for a variety of epithelial cancers. Int. J. Cancer. 2007, V. 120, P. 27442748. doi: 10.1002/ijc.2260110.1007/s13205-011-0036-2.

      42. Colombo F., Falvella F. S., De Cecco L., Tortoreto M., Pratesi G., Ciuffreda P., Ottria R., Santaniello E., Cicatiello L., Weisz A., Dragani T. A. Pharmacogenomics and analogues of the antitumour agent N 6 –isopentenyladenosine. Int. J. Cancer. 2009, V. 124, P. 2179–2185. doi: 10.1002/ijc.24168.

      43. Tararov V. I., Tijsma A., Kolyachkina S. V., Oslovsky V. E., Nevts J., Drenichev M. S., Leyssen P., Mikhailov S. N. Chemical modification of the plant isoprenoid cytokinin N 6-isopentenyladenosine yields a selective inhibitor of human enterovirus 71 replication. Eur. J. Med. Chem. 2015, V. 90, P. 406–413. doi: 10.1016/j.ejmech.2014.11.048.

      44. Ciaglia E., Pisanti S., Picardi P., Laezza C., Malfitano A. M., D’Alessandro A., Gazzerro P., Vitale M., Carbone E., Bifulco M. N6-isopentenyladenosine, an endogenous isoprenoid end product, directly affects cytotoxic and regulatory functions of human NK cells through FDPS modulation. J. Leukocyte Biol. 2013, V. 94, P. 1207–1219. doi: 10.1189/jlb.0413190.

      45. Bifulco M., Malfitano A. M., Proto M. C., Santoro A., Caruso M. G., Laezza C. Biological and pharmacological roles of N6-isopentenyladenosine: an emerging anticancer drug. Anticancer Agent Med. Chem. 2008, V. 8, P. 200–204. doi: http://dx.doi.org/10.2174/187152008783497028.

      46. Ottria R., Casati S., Manzocchi A., Baldoli E., Mariotti M., Maier J. A. M., Ciuffreda P. Synthesis and evaluation of in vitro anticancer activity of some novel isopentenyladenosine derivatives. Bioorg. Med. Chem. 2010, V. 18, P. 42494254. doi: 10.1016/j.bmc.2010.04.093.

 

"Biotechnologia Acta" V. 9, No 1, 2016
DOI:
Р. , Bibliography , English
Universal Decimal Classification:
606:615.322:631:871

ENDOGENOUS CYTOKININS IN MEDICINAL BASIDIOMYCETES MYCELIAL BIOMASS

N. P.Vedenicheva, G. A. Al-Maali, N. Yu. Mytropolska,

O. B. Mykhaylova, N. A. Bisko, I. V. Kosakivska

Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv

The aim of the research was to study the cytokinins production by medicinal basidial mushrooms. Cytokinins were for the first time identified and quantified in mycelial biomass of six species (Ganoderma lucidum, Trametes versicolor, Fomitopsis officinalis, Pleurotus nebrodensis, Grifola frondosa, Sparassis crispa) using HPLC. Trans- and cis-zeatin, zeatin riboside, zeatin-O-glucoside, isopentenyladenosine, isopentenyladenine were found but only one species (G. lucidum, strain 1900) contained all these substances. The greatest total cytokinin quantity was detected in F. officinalis, strain 5004. S. crispa, strain 314 and F. officinalis, strain 5004 mycelial biomass was revealed to have the highest level of cytokinin riboside forms (zeatin riboside and isopentenyladenosine). The possible connection between medicinal properties of investigated basidiomycetes and of cytokinins is discussed. S. crispa, strain 314 and F. officinalis, strain 5004 are regarded as promising species for developing biotechnological techniques to produce biologically active drugs from their mycelial biomass. As one of the potential technological approaches there is proposed fungal material drying.

Key words: medicinal mushrooms, mycelial biomass, cytokinins.

 

Additional menu

Site search

Site navigation

Home Archive 2016 № 1 TEST-SYSTEMS FOR MONITORING OF CORROSION-RELEVANT SULFATE-REDUCING BACTERIA USING REAL-TIME PCR ASSAY D. R. Аbdulina, L. М. Purish, G. А. Iutynska, М. М. Nikitin, A. G. Golikov

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.