Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2016 № 1 PIGMENT CONTENT OF Chlorella vulgaris BEIJ. UNDER INFLUENCE OF THE SODIUM SELENITE AND METALS IONS O. I. Bodnar, H. B. Viniarska, O. V. Vasilenko, V. V. Grubinko
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

"Biotechnologia Acta" V. 9, No 1, 2016
https://doi.org/10.15407/biotech9.01.071
Р. 71-78, Bibliography 27, English
Universal Decimal Classification: 547.979.7+582.263

PIGMENT CONTENT OF Chlorella vulgaris BEIJ. UNDER  INFLUENCE OF THE SODIUM SELENITE AND  METALS IONS

O. I. Bodnar, H. B. Viniarska, O. V. Vasilenko, V. V. Grubinko

Hnatiuk Ternopil  National Pedagogical University, Ukraine

The aim of the research  was to determine the conditions obtaining in the aquaculture of Chlorella vulgaris Beij. algosubstantion  enriched with selenium and bioactive metals. For this purpose, the content of seaweed pigments studied by the action of sodium selenite in a concentration based on Se4+: 0.5, 5.0, 10.0 and 20.0 mg / dm3 for 1, 3 and 7 days and while exposed 10.0 mg Se4 +/dm3 and Zn2+, Mn2 +, Co2 +, Cu2 +, Fe3 + in concentrations of 5.0 mg/dm 3, 0.25, 0.002, 0.008 and 0.05 mg/dm3, respectively, within 7 days of culturing. The content of pigments was determined spectrophotometrically, the cellular walls were given off in the percoll gradient and investigated microscopically. The pigments content in Ch. vulgaris increase by 1,5–2,5 times in comparison with control sample under the influence of 10 mg Se(IV)/dm3 with and without metal ions. In the same condition a ratio of chlorophylls a/b increased, that accompanied by the formation in cells of the second cell wall as the sign of successful adaptation process in the Chlorella cells under the influence of these factors. Thus, the cultivation of chlorella, enriched with selenium and bioactive  metals, is possible within 7 days under the influence of 10 mg Se (IV)/dm3 and mentioned concentration of these metal ions.

Key words: Chlorella vulgaris Beij., sodium selenite, metal ions, pigments.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

  • References
    • 1. Zhou Z., Li P., Liu Z. et al. Study on the accumulation of selenium and its binding to the proteins, polysaccharides and lipids from Spirulina maxima, S. platensis and S. subsalsa. Oceanol. Limnol. Sin. Haiyang Yu Huzhao. 1997, 28 (4), 363–370.

      2. Minjuk G. S., Trenkenshu R. P., Alisievich A. V., Drobeckaja I. V. Effect of selenium on the growth of algae Spirulina platensis (Nords.) In the storage and quasi-continuous cultures. Ekologiia moria. 2000, V. 54, P. 42–49. (In Russian).

      3. Bodnar O. I., Vinyarskaya G. B., Stanislavchuk G. V., Grubinko V. V. Peculiarities of Selenium Accumulation and Its Biological Role in Algae (a Review). Hydrobiology. J. 2015, 51 (1), 63–78.

      4. Prevot P., Soyer-Gobillard M. O. Responses to the action of cadmium and selenium in two dinoflageilates Prorocentrum micans and Crypthecodinium cohnii. Ministère de Environement, Paris (France). Corn. Sci. Milieu Marin. 1988, 14 (1), 267–271.

      5. Kostiuk K. V., Grubinko V. V. Ion Processes in the Cell Membranes of the Aquatic Plants under the Toxic Substances Impact. Hydrobiol. J. 2014, 50 (3), 80–89.

      6. Grubinko V. V., Gorda A. I., Bodnar O. I., Klochenko P. D. Metabolism of Algae under the Impact of Metal Ions of the Aquatic Medium (a Review). Hydrobiol. J. 2011, 47 (6), 75–88.

      7. Uminska R. Selenium in human environment. Rocz. Panstw. Zakl. Hig. 1990, V. 41, P. 25–34.

      8. Zolotareva O. K., Shnyukova E. I., Sivash O. O., Mikhaylenko N. F. Prospects of the use of microalgae in biotechnology. Kyiv: Alterpres. 2008, 234 p. (Іn Ukrainian).

      9. Grubinko V. V., Kostiuk K. V., Lutsiv A. I. Structural adaptations of cell walls of Chlorella vulgaris Beijer. the action of ions zinc and lead. Al'gologija. 2014, 24 (3), 282–287.

      10. Holtvyansky A. V. Bioaccumulation of metal ions by green algae cells and production of biomass enriched with microelements. Ph. D. dissertation, Biotekhnolohiia, Kyiv. 2002. (Іn Ukrainian).

      11. Schmid K. M., Ohlrogge J. B. Lipid metabolismin plants. Biochemistry of Lipids, Lipoproteins and Membranes. Vance D. E., Vance J. E. (Ed). Amsterdam: Elsevier. 2002, P. 93–126.

      12. Buchanan B. B., Gruissem W., Jones R. L. Biochemistry and Molecular Biology of Plants. 2nd Edition. Wiley. 2015, 1283 p.

      13. Sun X., Zhong Y., Huang Z., Yang Y. Selenium Accumulation in Unicellular Green Alga Chlorella vulgaris and Its Effects on Antioxidant Enzymes and Content of hotosynthetic Pigments. PLoS ONE. 2014, 9 (11), 1–8. http://dx.doi.org/10.1371/journal.pone.0112270

      14. Grubinko V. V., Kostiuk K. V. Structural Changes in the Cellular Membranes of the Aquatic Plants under the Impact of Toxic Substances. Hydrobiol. J. 2012, 48 (2) 40–54.

      15 Gorda А. I., Grubinko V. V. Effect of Diesel Fuel on Biosynthesis of Proteins, Carbohydrates and Lipids in Chlorella vulgaris Beijer. Biotekhnolohiia. 2011, 4 (6), 74–81. (In Ukrainian).

      16. Methods of physiological and biochemical research of algae in hydrobiological practice. Topachevskyy A.V. (Ed). Kyiv: Naukova dumka. 1975, 247 p. (In Russian).

      17. Methods of hydroecological investigation of surface waters. Romanenko V. D. (Ed.). Kyiv: Logos. 2006, 408 p. (In Ukrainian).

      18. Findley J. B. C., Evans W. H. Biological membranes: a practical approach. Oxford, Washington: IRL Press. 1987, 304 p.

      19. Broda B. Metody histochemii roslinnej. Warszawa: Panstwowy zaklad wydawnictw lekarskich. 1971, 255 p.

      20. Shlyk A. A. Biosynthesis and condition of chlorophylls in plants. Shlyk A. A (Ed.). Minsk: Nauka i tekhnika. 1975, 247p. (In Russian).

      21. Gorda А. I., Grubinko V. V. Biosynthesis of lipids in Chlorella vulgaris Beijer. under the action of Mn2+, Zn2+, Cu2+ and Pb2+. Reports of the National Academy of Sciences of Ukraine. 2011, N 11, P. 137–142. (In Ukrainian).

      22. Demmig A. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta. 1990, V. 1020, P. 1–24.
      http://dx.doi.org/10.1016/0005-2728(90)90088-L

      23. Prasad M. N. V., Strzalka K. Impact of heavy metals on photosynthesis. Heavy Metal Stress in Plants. Springer Verlag. Berlin. 1999, P. 117–138.
      http://dx.doi.org/10.1007/978-3-662-07745-0_6

      24. Maksymiec W., Russa R., Urbanik-Sypniewska T., Baszyński T. Changes in acyl lipid and fatty acid composition in thylakoids of copper non-tolerant spinach exposed to excess copper. J. Plant Physiol. 1992, V. 140, P. 52–55. http://dx.doi.org/10.1016/S0176-1617(11)81056-4

      25. Gennity J. M., Bottino N. R., Zingaro R. A. The binding of selenium to the lipids of two unicellular marin algae. Biochem. Biophys. Res. Commun. 1984, 118 (1), 176–182. http://dx.doi.org/10.1016/0006-291X(84)91083-0

      26. Vinyarska H. B., Bodnar O. I., Stanislavchuk A. V., Grubinko V. V. The binding of selenium in the culture of Chlorella vulgaris. Ukr. Biochem. J. 2014, 86 (5) (Suppl. 2), 50–51. (In Ukrainian).

      27. Mager W. H., Kruijft A. J. J. Stress-induced transcriptional activation. Microbiol. Rev. 1995, V. 59, P. 506–531.