Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2016 № 1 CHLOROPLAST STRUCTURAL AND FUNCTIONAL CHANGES AS BIOMARKERS OF HEAVY METAL CONTAMINATION M. V. Vodka, N. O. Bilyavs’ka
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)


"Biotechnologia Acta" V. 9, No 1, 2016
https://doi.org/10.15407/biotech9.01.103
Р. 103-107, Bibliography 15, English
Universal Decimal Classification: 577.152.087:581.2

CHLOROPLAST STRUCTURAL AND FUNCTIONAL CHANGES AS BIOMARKERS OF HEAVY METAL CONTAMINATION

M. V. Vodka, N. O. Bilyavs’ka

Kholodny Botany Institute of the National Academy of Sciences of Ukraine, Kyiv

The aim was to confirm the hypothesis of possibility to use the chloroplast structural and functional changes in higher plants as biomarkers to assess heavy metal contamination.

Chloroplast ultra-structural changes of Pisum sativum L were detected using the transmission electron microscopy. This work deals with studies of chloroplast structure responses to a high content of copper (250 μmМ) and zinc (400 μmМ). Data on changes in the structure of chloroplasts in particular, heterogeneity in the grain thylakoid packing, increase of interthylakoid gaps and thickness of chloroplast grain thylakoids in comparison with controls were obtained. The results of studies on structural and functional chloroplasts changes offer challenges for their use as markers for an early diagnostics of abiotic stress effects and in biotechnological studies to produce novel advanced varieties of crops resistant to stress.

Key words: Pisum sativum L., chloroplast changes, heavy metal contamination, biomarkers.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

  • References
    • 1. Nikitin A. T. Ekologiya, ohrana prirody, ekologicheskaya bezopacnoct'. Moskva: MNEPU. 2000, P. 648. (In Russian).

      2. Bertrand M., Poirier I. Photosynthetic organisms and excess of metals. Photosynthetica. 2005. 43 (3), 345–353.
      http://dx.doi.org/10.1007/s11099-005-0058-2

      3. Carrier P., Baryla A., Havaux M. Cadmium distribution and microlocalization in oilseed rape plants (Brassica napus) after long-term grown on cadmium-contaminated soil. Planta. 2003, V. 216, P. 939–950. doi: 10.1007/s00425-002-0947-6.

      4. Techau M. E., Valdez-Taubas J., Popoff J. F., Francis R., Seaman M., Blackwell J. M. Evolution of differences in transport function in slc11a family members. J. Biol. Chem. 2007, V. 282, P. 35646–35656. doi: 10.1074/jbc.M707057200.

      5. Pedas P., Husted S. Zinc transport mediated by barley ZIP proteins are induced by low pH. Plant Signal. Behav. 2009, 4 (9), 842–845.
      http://dx.doi.org/10.4161/psb.4.9.9375

      6. Ferro M., Salvis D., Brugière S. Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol. Cell. Proteom. 2003, V. 2., P. 325–345. doi: 10.1074/mcp.M300030-MCP200.

      7. Hall J. L. Cellular Mechanisms for Heavy Metal Detoxification and Tolerance. J. Exp. Bot. 2002, V. 53, P. 1–11.
      http://dx.doi.org/10.1093/jexbot/53.366.1

      8. Molas J. Changes in morphological and anatomical structure of cabbage (Brassica oleracea L.) outer leaves and in ultrastructure of their chloroplasts caused by an in vitro excess of nickel. Photosynthetica. 1997, 34 (4), 513–522.
      http://dx.doi.org/10.1023/A:1006805327340

      9. Molas J. Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni (II) complex. Environ. Exp. Bot. 2002, V. 47, P. 115–126.
      http://dx.doi.org/10.1016/S0098-8472(01)00116-2

      10. Vassilev A., Lidon F., Scotti P., Da Graca M., Iordanov I. Cadmiuminduced changes in chloroplast lipids and photosystem activities in barley plants. Biol. Plant. 2004, 48 (1), 153–156.
      http://dx.doi.org/10.1023/B:BIOP.0000024295.27419.89

      11. Krupa Z., Baszyński T. Some aspects of heavy metals toxicity towards photosynthetic apparatus – direct and indirect effects on light and dark reactions. Acta Physiol. Plant. 1995, V. 17, P. 177–190.

      12. Pätsikkä E., Aro E.-M., Tyystjärvi E. Mechanism of cupper-enhanced photoinhibition in thylakoid membranes. Physiol. Plant. 2001, V. 113, P. 142–150.
      http://dx.doi.org/10.1034/j.1399-3054.2001.1130119.x

      13. Vodka M. V., Polishchuk A. V., Belyavskaya N. A., Zolotareva E. K. Effects of heavy metals, carbonic anhydrase inhibitors, on photosynthetic apparatus of pea leaf chloroplasts. Biul. Kharkiv Nats. Ahrar. Univ. Ser. Biol. 2013, 30 (1), 46–55. (In Russian).

      14. Vodka M. V., Polishchuk O. V., Bilyavska N. O., Zolotarova O. K. Reaktsiya fotosyntetychnoho aparatu shpynatu na diyu vazhkykh metaliv, inhibitoriv karboanhidrazy. Dop. NAN Ukrainy. 2013, V. 10, P. 152–158. (In Ukrainian).

      15. Titov A. F., Talanova V. V., Kaznina N. M., Laidinen G. F. Ustoichivost’ rastenii k tyazhelym metallam ((Plant Tolerance to Heavy Metals). Petrozavodsk: Karel’sk. nauchn. tsentr Ross. Akad. Nauk. 2007, P. 172. (In Russian).

 

1. Nikitin A. T. Ekologiya, ohrana prirody, ekologicheskaya bezopacnoct'. Moskva: MNEPU. 2000, P. 648. (In Russian).

2. Bertrand M., Poirier I. Photosynthetic organisms and excess of metals. Photosynthetica. 2005. 43 (3), 345–353.

3. Carrier P., Baryla A., Havaux M. Cadmium distribution and microlocalization in oilseed rape plants (Brassica napus) after long-term grown on cadmium-contaminated soil. Planta. 2003, V. 216, P. 939–950. doi: 10.1007/s00425-002-0947-6.

4. Techau M. E., Valdez-Taubas J., Popoff J. F., Francis R., Seaman M., Blackwell J. M. Evolution of differences in transport function in slc11a family members. J. Biol. Chem. 2007, V. 282, P. 35646–35656. doi: 10.1074/jbc.M707057200.

5. Pedas P., Husted S. Zinc transport mediated by barley ZIP proteins are induced by low pH. Plant Signal. Behav. 2009, 4 (9), 842–845.

6. Ferro M., Salvis D., Brugière S. et. al. Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol. Cell. Proteom. 2003, V. 2., P. 325–345. doi: 10.1074/mcp.M300030-MCP200.

7. Hall J. L. Cellular Mechanisms for Heavy Metal Detoxification and Tolerance. J. Exp. Bot. 2002, V. 53, P. 1–11.

8. Molas J. Changes in morphological and anatomical structure of cabbage (Brassica oleracea L.) outer leaves and in ultrastructure of their chloroplasts caused by an in vitro excess of nickel. Photosynthetica. 1997, 34 (4), 513–522.

9. Molas J. Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni (II) complex. Environ. Exp. Bot. 2002, V. 47, P. 115–126.

10. Vassilev A., Lidon F., Scotti P., Da Graca M., Iordanov I. Cadmiuminduced changes in chloroplast lipids and photosystem activities in barley plants. Biol. Plant. 2004, 48 (1), 153–156.

11. Krupa Z., Baszyński T. Some aspects of heavy metals toxicity towards photosynthetic apparatus – direct and indirect effects on light and dark reactions. Acta Physiol. Plant. 1995, V. 17, P. 177–190.

12. Pätsikkä E., Aro E.-M., Tyystjärvi E. Mechanism of cupper-enhanced photoinhibition in thylakoid membranes. Physiol. Plant. 2001, V. 113, P. 142–150.

13. Vodka M. V., Polishchuk A. V., Belyavskaya N. A., Zolotareva E. K. Effects of heavy metals, carbonic anhydrase inhibitors, on photosynthetic apparatus of pea leaf chloroplasts. Biul. Kharkiv Nats. Ahrar. Univ. Ser. Biol. 2013, 30 (1), 46–55. (In Russian).

14. Vodka M. V., Polishchuk O. V., Bilyavska N. O., Zolotarova O. K. Reaktsiya fotosyntetychnoho aparatu shpynatu na diyu vazhkykh metaliv, inhibitoriv karboanhidrazy. Dop. NAN Ukrainy. 2013, V. 10, P. 152–158. (In Ukrainian).

15. Titov A. F., Talanova V. V., Kaznina N. M., Laidinen G. F. Ustoichivost’ rastenii k tyazhelym metallam ((Plant Tolerance to Heavy Metals). Petrozavodsk: Karel’sk. nauchn. tsentr Ross. Akad. Nauk. 2007, P. 172. (In Russian).