Biotechnologia Acta


  • Increase font size
  • Default font size
  • Decrease font size
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta
V. 8, No 6, 2015

"Biotechnologia Acta" V. 8, No 6, 2015
Р. 9-15, Bibliography 27, English
Universal Decimal Classification: 577.112:616


D. O. Tsymbal, О. H. Minchenko

Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv

To investigate IRE1-dependent branch of endoplasmic reticulum stress pathway in various cancer cells we created cDNA-constructs for expression of dominant-negative inositol-requiring enzyme – 1 IRE1 and cytosolic domain of IRE1 fused on a C-terminus with c-Myc and 6xHis tags. The non-small-cell lung carcinoma cells H1299-shE6AP were transfected with these constructs. Using anti-c-Myc antibodies we demonstrated effective, dose-dependent expression of dominant-negative and cytosolic IRE1 proteins. In order to investigate IRE1-mediated, heat shock element-dependent transcription, the cells were further transfected with a reporter construct containing heat shock element. We observed that overexpression of dnIRE1 in H1299-shE6AP cells led to significant induction of heat shock element-dependent transcription. This observation may reflect the induction of heat shock genes, which contribute to cellular adaptation to inhibition of native IRE1, a key sensory-signaling enzyme of endoplasmic reticulum stress pathway, which suppresses cancer cell proliferative capacities and alternates the expression of numerous genes, including many transcription factors.

Key words: endoplasmic reticulum stress, IRE1, recombinant protein expression, heat shock element, luciferase reporter assay.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

  • References
      1. Moenner M., Pluquet O., Bouchecareilh M., Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 2007, 67 (22), 10631–10634.
      2. Wang S., Kaufman R. J. The impact of the unfolded protein response on human disease. J. Cell Biol. 2012, 197 (7), 857–867.
      3. Marciniak S. J., Ron D. Endoplasmic reticulum stress signaling in disease. Physiol. Rev. 2006, 86 (4), 1133–1149.
      4. Minchenko O. H., Kharkova A. P., Bakalets T. V., Kryvdiuk I. V. Endoplasmic reticulum stress, its sensor and signalling systems and the role in regulation of gene expression at malignant tumor growth and hypoxia. Ukr. Biokhim. Zh. 2013, 85 (5), 5–16. (In Ukrainian).
      5. Chen Y., Brandizzi F. IRE1: ER stress sensor and cell fate executor. Trends in Cell Biol. 2013, 23 (11), 547–555.
      6. Korennykh A. V., Egea P. F., Korostelev A. A., Finer-Moore J., Zhang C., Shokat K. M., Stroud R. M., Walter P. The unfolded protein response signals through high-order assembly of Ire1. Nature. 2009, 457 (7230), 687–693.
      7. Oikawa D., Tokuda M., Hosoda A., Iwawaki T. Identification of a consensus element recognized and cleaved by IRE1α. Nucl. Acids Res. 2010, 38 (18), 6265–6273.
      8. Maurel M., Chevet E., Tavernier J., Gerlo S. Getting RIDD of RNA: IRE1 in cell fate aregulation. Trends Biochem. Sci. 2014, 39 (5), 245–254.
      9. Acosta-Alvear D., Zhou Y., Blais A., Tsikitis M., Lents N. H., Arias C., Lennon C. J., Kluger Y., Dynlacht B. D. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol. Cell. 2014, 27 (1), 53–66.

      10.  Auf G., Jabouille A., Guerit S., Pineau R., Delugin M., Bouchecareilh M., Magnin N., Favereaux A., Maitre M., Gaiser T., von Deimling A., Czabanka M., Vajkoczy P., Chevet E., Bikfalvi A., Moenner M. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc. Natl. Acad. Sci. USA. 2010, 107 (35), 15553–15558.

      11.  Drogat B., Auguste P., Nguyen D. T., Bouchecareilh M., Pineau R., Nalbantoglu J., Kaufman R. J., Chevet E., Bikfalvi A., Moenner M. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res. 2007, 67 (14), 6700–6707.

      12.  Drogat B., Bouchecareilh M., North S., Petibois C., Deleris G., Chevet E., Bikfalvi A., Moenner M. Acute L-glutamine deprivation compromises VEGF-A up-regulation in A549/8 human carcinoma cells. J. Cell. Physiol. 2007, 212 (2), 463–472.

      13.  Minchenko D. O., Karbovskyi L. L., Danilovskyi S. V., Moenner M., Minchenko O. H. Effect of hypoxia and glutamine or glucose deprivation on the expression of retinoblastoma and retinoblastoma-related genes in IRE1 knockdown glioma U87 cell line. Am. J. Mol. Biol. 2012, 2 (1), 142–152.

      14.  Minchenko O. H., Tsymbal D. O., Minchenko D. O., Moenner M., Kovalevska O. V., Lypova N. M. Inhibition of kinase and endoribonuclease activity of IRE1/IRE1α affects expression of proliferation-related genes in U87 glioma cells. Endoplasm. Reticul. Stress Dis. 2015, 2 (1), 18–29.

      15.  Minchenko O. H., Tsymbal D. O., Minchenko D. O., Kovalevska O. V., Karbovskyi L. L. Bikfalvi A. Inhibition of IRE1 signaling enzyme affects hypoxic regulation of the expression of E2F8, EPAS1, HOXC6, ATF3, TBX3 and FOXF1 genes in U87 glioma cells. Ukr. Biochem. J. 2015, 87 (2), 76–87.

      16.  Minchenko O. H., Tsymbal D. O., Minchenko D. O. IRE-1alpha signaling as a key target for suppression of tumor growth. Single Cell Biol. 2015, 4(3), 118.

      17.  Jiang D., Niwa M., Koong A. C. Targeting the IRE1–XBP1 branch of the unfolded protein response in human diseases. Semin. Cancer Biol. 2015, V. 33, P. 48–56.

      18.  Auf G., Jabouille A., Delugin M., Guerit S., Pineau R., North S., Platonova N., Maitre M., Favereaux A., Vajkoczy P., Seno M., Bikfalvi A., Minchenko D., Minchenko O., Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor. BMC Cancer. 2013, 13(1), 597.

      19.  Minchenko D. О., Kubajchuk К. І., Ratushna O. O., Komisarenko S. V., Minchenko O. H. The vascular endothelial growth factor genes expression in glioma U87 cells is dependent from IRE1 signaling enzyme function. Adv. Biol. Chem. 2012, 2 (2), 198–206.

      20.  Jackson A., Linsley P. S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov. 2010, 9 (1), 57–67.

      21.  Jäger R., Bertrand M. J. M., Gorman A. M., Vandenabeele P., Samali A. The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biol. Cell. 2012, 104 (5), 259–270.

      22.  Lee A-H., Iwakoshi N. N., Glimcher L. H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 2003, 23 (21), 7448–7459.

      23.  Morimoto R. I., Sarge K. D., Abravaya K. Transcriptional regulation of heat shock genes. A paradigm for inducible genomic responses. J. Biol. Chem. 1992, 267 (31), 21987–21990.

      24.  Kühnle S., Mothes B., Matentzoglu K., Scheffner M. Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein Arc. Proc. Natl. Acad. Sci. USA. 2013, 110 (22), 8888–8893.

      25.  Wang X., Harding H. P., Zhang Y., Jolicoeur E. M., Kuroda M., Ron D. Cloning of mammalian Ire1 reveals diversity in the ER stress response. EMBO J. 1998, 17 (19), 5708–5717.

      26.  Uemura A., Oku M., Mori K., Yoshida H. Unconventional splicing of XBP1 mRNA occurs in the cytoplasm during the mammalian unfolded protein response. J. Cell Sci. 2009, 122 (16), 2877–2886.

      27.  Liu Y., Chang A. Heat shock response relieves ER stress. EMBO J. 2008, 27 (7), 1049–1059.


Additional menu

Site search

Site navigation


Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
for information: