Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2015 № 6 EFFECT OF CURCUMIN LIPOSOMAL FORM ON ANGIOTENSIN CONVERTING ACTIVITY, CYTOKINES AND COGNITIVE CHARACTERISTICS OF THE RATS WITH ALZHEIMER’S DISEASE MODEL V.V. Sokolik, S.М. Shulga
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta
V. 8, No 6, 2015

"Biotechnologia Acta" V. 8, No 6, 2015
https://doi.org./10.15407/biotech8.06.048
Р. 48-55, Bibliography 45, English
Universal Decimal Classification: 612.015:616.153.96:616.894

EFFECT OF CURCUMIN LIPOSOMAL FORM ON ANGIOTENSIN CONVERTING ACTIVITY, CYTOKINES AND COGNITIVE CHARACTERISTICS OF THE RATS WITH ALZHEIMER’S DISEASE MODEL

V.V. Sokolik1, S.М. Shulga2

1State University “Institute for Neurology, Psychiatry and Narcology of the National Academy of Medical Science of Ukraine”, Kharkiv
2 State University “Institute for Food Biotechnology and Genomics of the National Academy of Science of Ukraine”, Kyiv

The purpose of the study was the investigation of curcumin liposome form effect on angiotensinconverting enzyme activity, cytokines and mnestic features of rats with experimental model of Alzheimer’s disease. In the animals with intrahippocampal injection of Аβ42_Human, nasal therapy with curcumin liposome form was used. Cytokine concentration and angiotensin converting enzyme activity in brain regions (cerebral cortex and hippocampus) and in blood serum as well as indicators of conditioned avoidance response were registered. It was found that as a result of curcumin therapy the rats with Alzheimer’s disease had suppressed cytokine and angiotensin converting enzyme activities and recovered mnestic indices. Nasal therapy with curcumin liposome form gave reduction of angiotensin-converting enzyme activity and anti-cytokine effect in the target regions of the brain (cerebral cortex and hippocampus), which helped the rats mnestic features and memory recovery.

Key words: curcumin, liposomes, β-amyloid peptide, cytokines, angiotensin- converting enzyme.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

  • References
    • 1. Minati L., Edginton T., Bruzzone M. G., Giaccone G. Current concepts in Alzheimer’s disease: a multidisciplinary review. Am. J. Alzheim. Dis. Other Dement. 2009, V. 24, P. 95–121. http://dx.doi.org/10.1177/1533317508328602

      2. Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev. 2006. CD005593. http://dx.doi.org/10.1002/14651858.cd005593

      3. Gotti C., Riganti L., Vailati S., Clementi F. Brain neuronal nicotinic receptors as new targets for drug discovery. Curr. Pharm. Des. 2006, V. 12, P. 407–428. http://dx.doi.org/10.2174/138161206775474486

      4. Palmer G. C. Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies. Curr. Drug. Targ. 2001, V. 2, P. 241–271. http://dx.doi.org/10.2174/1389450013348335

      5. Ostrowski S. M., Wilkinson B. L., Golde T. E., Landreth G. Statins reduce amyloid-beta production through inhibitionof protein isoprenylation. J. Biol. Chem. 2007, V. 282, P. 26832–26844. http://dx.doi.org/10.1074/jbc.M702640200

      6. Tamburri A., Dudilot A., Licea S., Bourgeois C., Boehm J. NMDA-receptor activation but not ion flux is required for amyloid-beta induced synaptic depression. PLoS One. 2013, V. 8, P. e65350. http://dx.doi.org/10.1371/journal.pone.0065350

      7. Takamura A., SatoY., Watabe D., Okamoto Y., Nakata T., Kawarabayashi T., Oddo S., Laferla F. M., Shoji M., Matsubara E. Sortilin is required for toxic action of Aβ oligomers (AβOs): extracellular AβOs trigger apoptosis, and intraneuronal AβOs impair degradation path ways. Life Sci. 2012, V. 91, P. 1177–1186. http://dx.doi.org/10.1016/j.lfs.2012.04.038

      8. Slack B. E., Wurtman R. J. Regulation of synthesis and metbolism of the amyloid precursor protein by extracellular signals. Res. Progr. Alzh. Dis. Dement. 2007, V. 2, P. 1–25.

      9. Mattson M. P. Pathways towards and away from Alzheimer's disease. Nature. 2004, V. 430, P. 631–639. http://dx.doi.org/10.1038/nature02621

      10. Mehan S., Arora R., Sehgal V., Sharma D., Sharma G. Inflammatory diseases – immunopathology, clinical and pharmacological bases; in Khatami M (ed): Dementia: A Complete Literature Review on Various Mechanisms Involved in Pathogenesis and an Intracerebroventricular Streptozotocin-Induced Alzheimer's Disease. Rijeka, InTech. 2012, P. 3–19.

      11. Swardfager W., Lanctôt K., Rothenburg L., Wong A., Cappell J., Herrmann N. A meta-analysis of cytokines in Alzheimer's disease. Biol. Psych. 2010, V. 68, P. 930–941. http://dx.doi.org/10.1016/j.biopsych.2010.06.012

      12. Hunter C. A., Timans J., Pisacane P., Menon S., Cai G., Walker W., Aste-Amezaga M., Chizzonite R., Bazan J. F., Kastelein R. A.Comparison of the effects of interleukin-1, interleukin-1and interferon-inducing factor on the production of interferon-by natural killer. Eur. J. Immunol. 1997, V. 27, P. 2787–2792. http://dx.doi.org/10.1002/eji.1830271107

      13. Dinarello C. A. Proinflammatory cytokines. Chest. 2000,V. 118, P. 503–508. http://dx.doi.org/10.1378/chest.118.2.503

      14. Soscia S. J., Kirby J. E., Washicosky K. J., Tucker S. M., Ingelsson M., Hyman B., Burton M. A., Goldstein L. E., Duong S., Tanzi R. E., Moir R. D. Bush, Ashley I., ed. The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS One. 2010, V. 5, P. e9505.

      15. Huber T. S., Gaines G. S., Welborn M. B., Roseberg J. J., Seeger J. M., Moldawer L. L. Anticytokine therapies for acute inflammation and the systemic inflammatory response syndrome: IL-10 and ischemia/reperfusion injury as a new paradigm. Shock. 2000, V. 13, P. 425–434. http://dx.doi.org/10.1097/00024382-200006000-00002

      16. Akiyama H., Barger S., Barnum S., Bradt B., Bauer J., Cole G. M., Cooper N. E., Eikelenboom P., Emmerling M., Fiebich B. L., Finch C. E., Frautschy S., Griffin W. S., Hampel H., Hull M., Landreth G., Lue L., Mrak R., Mackenzie I. R., Mcgeer P. L., O’Banion M. K., Pachter J., Pasinetti G., Plata-Salaman C., Rogers J., Rydel R., Shen Y., Streit W., Strohmeyer R., Tooyoma I., Van Muiswinkel F. L., Veerhuis R., Walker D., Webster S., Wegrzyniak B., Wenk G., Wyss-Coray T. Inflammation and Alzheimer’s disease. Neurobiol. Aging. 2000, V. 21, P. 383–421. http://dx.doi.org/10.1016/S0197-4580(00)00124-X

      17. Stewart W. F., Kawas C., Corrada M., Metter E. J. Risk of Alzheimer’s disease and duration of NSAID use. Neurology. 1997, V. 48, P. 626–631. http://dx.doi.org/10.1212/WNL.48.3.626

      18. Shezad A., Lee Y. S. Molecular mechanisms of curcumin action: signal transduction. Biofactors. 2013, V. 39, P. 27–36. http://dx.doi.org/10.1002/biof.1065

      19. Bharti A. C., Takada Y., Aggarwal B. B. Curcumin (diferuloylmethane) inhibits receptor activator of NF-κB ligand-induced NF-κB activation in osteoclast precursors and suppresses osteoclastogenesis. J. Immunol. 2004, V. 172, P. 5940–5947. http://dx.doi.org/10.4049/jimmunol.172.10.5940

      20. Teiten M. N., Dicato M., Diederich V. Curcumin as a regulator of epigenetic events. Mol. Nutr. Food Res. 2013, V. 57, P. 1619–1629. http://dx.doi.org/10.1002/mnfr.201300201

      21. Lee W. H., Loo C. Y., Bedawy M., Luk F., Mason R. S., Rohanizadeh R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol. 2013, V. 11, P. 338–378. http://dx.doi.org/10.2174/1570159X11311040002

      22. Jackson J. K., Higo T., Hunter W. L., Burt H. M. The antioxidants curcumin and quercetin inhibit inflammatory processes associated with arthritis. Inflamm. Res. 2006, 55(4), 168–175. http://dx.doi.org/10.1007/s00011-006-0067-z

      23. Banerjee M., Tripathi L. M., Srivastava V. M., Puri A., Shukla R. Modulation of inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharm. Immunotox. 2003, 25 (2), 213–224. http://dx.doi.org/10.1081/IPH-120020471

      24. Kunnumakkara A. B., Anand P., Aggarwal B. B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008, 269 (2), 199–225. http://dx.doi.org/10.1016/j.canlet.2008.03.009

      25. Ono K., Hasegawa K., Naiki H., Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J. Neurosci. Res. 2004, 75 (6), 742–750. http://dx.doi.org/10.1002/jnr.20025

      26. Yang F., Lim G. P., Begum A. N., Ubeda O. J., Simmons M. R., Ambeqaokar S. S., Chen P. P., Kayed R., Glabe C. G., Frautschy S. A., Cole G. M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 2005, 280 (7), 5892–5901. http://dx.doi.org/10.1074/jbc.M404751200

      27. Zhang L., Fiala M., Cashman J., Sayre J., Espinosa A., Mahanian M., Zaghi J., Badmaev V., Graves M. C., Bernard G., Rosenthal M. Curcuminoids enhance amyloid-beta uptake by macrophages of Alzheimer’s disease patients. J. Alzh. Dis. 2006, 10 (1), 1–7.

      28. Shulga S. M. Obtaining and characteristic of curcumin liposomal form. Biotechnologia Acta. 2014, 7 (5), 55–61. http://dx.doi.org/10.15407/biotech7.05.055

      29. Miners J. S., Baig S., Palmer J., Palmer L. E., Kehoe P. G., Love S. Aβ-degrading enzymes in Alzheimer's disease. Brain Pathol. 2008, V. 18, P. 240–252. http://dx.doi.org/10.1111/j.1750-3639.2008.00132.x

      30. Hu J., Igarashi A., Kamata M., Nakagawa H. Angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide (Abeta); retards Abeta aggregation, deposition, fibril formation; and inhibits cytotoxicity. J. Biol. Chem. 2001, 276 (5), 47863–47868.

      31. Hemming M. L., Selkoe D. J. Amyloid β-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J. Biol. Chem. 2005, 280 (45), 37644–37650. http://dx.doi.org/10.1074/jbc.M508460200

      32. Vorobjova T. M. Role of limbic and reticular systems in selfstimulation. The federation of American societies for experimental biology. 1969, V. 70, P. 95–101.

      33. Bures J., Petran M., Zachar J. Electrophysiological methods in biological research. Ed.2 Publishing House. 1960, 516 p.

      34. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951, V. 193, P. 265–275.

      35. Ronca-Testoni S. Direct spectrophotometric assay for angiotensin-converting enzyme. Clin. Chem. 1983, V. 29, P. 1093–1096.

      36. Arregui A., Perry E. K., Rossor M., Tomlinson B. E. Angiotensin converting enzyme in Alzheimer’s disease increased activity in caudate nucleus and cortical areas. J. Neurochem. 1982, V. 38, P. 1490–1492. http://dx.doi.org/10.1111/j.1471-4159.1982.tb07930.x

      37. Sokolik V. V., Shulga S. M. Curcumin influence on the background of intrahippocampus administration of β-amyloid peptide in rats. Biotechnologia Acta. 2015, 8 (3), 78–88. http://dx.doi.org/10.15407/biotech8.03.078

      38. Sadigh-Eteghad S., Sabermarouf B., Majdi A., Talebi M., Farhoudi M., Mahmoudi J. Amyloid-Beta: A Crucial Factor in Alzheimer’s Disease. Med. Princ. Pract. 2015, V. 24, P. 1–10. http://dx.doi.org/10.1159/000369101

      39. Ridolfi E., Barone C., Scarpini E., Galimberti D. The role of the innate immune system in Alzheimer’s disease and frontotemporal lobar degeneration: an eye on microglia. Clin. Dev. Immunol. 2013, P. 939786. http://dx.doi.org/10.1155/2013/939786

      40. Boutajangout A., Wisniewski T. The innate immune system in Alzheimer’s disease. Int. J. Cell. Biol. 2013, P. 576383. http://dx.doi.org/10.1155/2013/576383

      41. Smith J. A., Das A., Ray S. K., Banik N. L. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res. Bull. 2012, V. 87, P. 10–20. http://dx.doi.org/10.1016/j.brainresbull.2011.10.004

      42. Aggarwal B. B., Gupta S. C., Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br. J. Pharmacol. 2013, V. 169, P. 1672–1692. http://dx.doi.org/10.1111/bph.12131

      43. Jobin C. C., Bradham A., Russo M. P., Juma B., Narula A. S., Brenner D. A., Sartor R. B. Curcumin blocks cytokine-mediated NF-κB activation andproinflammatory gene expression by inhibiting inhibitory factor IB kinase activity. J. Immunol. 1999, V. 163, P. 3474.

      44. Pan M. H., Lin-Shiau S. Y., Lin J. K. Comparative studies on thesuppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IB kinase and NF-κB activation in macrophages. Biochem. Pharmacol. 2000, V. 60, P. 1665. http://dx.doi.org/10.1016/S0006-2952(00)00489-5

      45. Fazal Y., Fatima S. N., Shahid S. M., Mahboob T. Effects of curcumin on angiotensin-converting enzyme gene expression, oxidative stress and anti-oxidant status in thioacetamide-induced hepatotoxicity. J. Renin Angioten. Aldoster. Syst. 2014, Epub 2014, pii: 1470320314545777.



 

Additional menu

Site search

Site navigation

Home Archive 2015 № 6 EFFECT OF CURCUMIN LIPOSOMAL FORM ON ANGIOTENSIN CONVERTING ACTIVITY, CYTOKINES AND COGNITIVE CHARACTERISTICS OF THE RATS WITH ALZHEIMER’S DISEASE MODEL V.V. Sokolik, S.М. Shulga

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.