Biotechnologia Acta


  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2015 №5 HIGH-CONDUCTIVE NANOSTRUCTURES IN BIOCHEMICAL STUDIES: FLUORESCENCE ENHANCING V. I. Chegel, A. M. Lopatynskyi, V. К. Lytvyn, O. M. Naum, V. I. Nazarenko, А. P. Demchenkо
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta
V. 8, No 5, 2015

"Biotechnologia Acta" V. 8, No 5, 2015
Р. 9-18, Bibliography 54, English
Universal Decimal Classification: 546.26.043


V. I. Chegel1, A. M. Lopatynskyi1, V. К. Lytvyn1, O. M. Naum1,
V. I. Nazarenko2, А. P. Demchenkо2

1Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine, Kyiv
2Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv

This paper presents the results of experimental and theoretical studies of quenching and enhancement of fluorescence by colloidal solutions of nanoparticles and arrays of nanostructures on solid substrates — nanochips. The literature data and the results of authors’ own studies on the possibility of fluorescence signal manipulation in the presence of gold and silver nanostructures were shown. Mathematical modeling and comparative investigation of the samples with high-conductive metal nanostructures as active elements for the regulation of fluorescence signal were also performed. Nanochips samples were fabricated by thermal annealing of highly conductive gold and silver island films. Using developed novel laser-based fluorometer FluorotestNano it was shown that fluorescence intensity of Rhodamine 6G dye can  be enhanced up to 23 times near gold nanostructures by spacing the dye from the nanoparticle at the distance of 20 nm using SiO2 coating. Using high-conductive metal nanostructures to adjust the fluorescence signal opens promising new directions in biochemical studies, such as increasing the sensitivity of fluorescence methods, development of new biosensors, fluorescence microscopy techniques and medical diagnostics.

Key words: nanostructure arrays, gold and silver nanoparticles, surface-enhanced fluorescence,
polymer matrix.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

  • References
    • 1. Lakowicz J. R. Principles of fluorescence spectroscopy. Springer-Verlag US. 2006, 954 p.
      doi: 10.1007/978-0-387-46312-4.

      2. Drummen G. Fluorescent probes and fluorescence microscopy techniques – illuminating biological and biomedical research. Molecules. 2012, V. 17, P. 14067–14090.
      doi: 10.3390/molecules171214067.

      3. Demchenko A. P. Introduction to fluorescence sensing. Berlin: Springer-Verlag. 2009, 612 p.
      doi: 10.1007/978-1-4020-9003-5.

      4. Valeur B., Berberan-Santos M. N. Molecular fluorescence principles and applications. Willey-VCH Verlag. 2013, 592 p. doi: 10.1002/9783527650002.

      5. Demchenko A. P., Mely Y., Duportail G., Klymchenko A. S. Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys. J. 2009, V. 96, Р. 3461–3470. doi: 10.1016/j.bpj.2009.02.012.

      6. Millar D. P. Fluorescence studies of DNA and RNA structure and dynamics. Cur. Opin. Struct. Biol. 1996, V. 6, P. 322–326. doi: 10.1016/S0959-440X(96)80050-9.

      7. Royer C. A. Probing protein folding and conformational transitions with fluorescence Chem. Rev. 2006, 106 (5), 1769–1784. doi: 10.1021/cr0404390.

      8. Shendure J., Ji H. Next-generation DNA sequencing. Nat. Biotechnol. 2008, 26 (10), 1135–1145. doi: 10.1038/nbt1486.

      9. McGinn S., Gut I. G. DNA sequencing — spanning the generations. New Biotechnol. 2013, 30 (4), 366–372. doi: 10.1016/j.nbt.2012.11.012.

      10. Liu S. and Tang Z. Nanoparticle assemblies for biological and chemical sensing. J. Mat. Chem. 2010, 20 (1), 24–35. doi: 10.1039/B911328M.

      11. Hötzer B., Medintz I. L., Hildebrandt N. Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications. Small. 2012, 8 (15), 2297–2326. doi: 10.1002/smll.201290084.

      12. Andreescu S., Sadik O. A. Trends and challenges in biochemical sensors for clinical and environmental monitoring. Pure Appl. Chem. 2004, 76 (4), 861–878. doi: 10.1351/pac200476040861.

      13. Riu J., Maroto A., Rius F. X. Nanosensors in environmental analysis. Talanta. 2006, 69 (2), 288–301. doi: 10.1016/j.talanta.2005.09.045.

      14. Patel P. D. Biosensors for measurement of analytes implicated in food safety: a review. Trac-Trends Anal. Chem. 2002, 21 (2), 96–115. doi: 10.1016/S0165-9936(01)00136-4.

      15. Gooding J. J. Biosensor technology for detecting biological warfare agents: Recent progress and future trends. Analytica Chimica Acta. 2006, 559 (2), 137–151. doi: 10.1016/j.aca.2005.12.020.

      16. Amin R., Hwang S., Park S. H., Nanobiotcechnology: an interface between nanotechnology and biotechnology. NANO: Brief Reports and Reviews. 2011, V. 6, P. 101–111.
      doi: 10.1142/S1793292011002548.

      17. Wang J. Biomolecule-functionalized nanowires: from nanosensors to nanocarriers. Chemphyschem. 2009, 10 (11), 1748–1755. doi: 10.1002/cphc.200900377.

      18. Suh W. H., Suh Y.-H., Stucky G. D. Multifunctional nanosystems at the interface of physical and life sciences. Nano Today. 2009, 4 (1), 27–36. doi: 10.1016/j.nantod.2008.10.013.

      19. Howes P. D., Rana S., Stevens M. M. Plasmonic nanomaterials for biodiagnostics. Chem. Soc. Rev. 2014, V. 43, P. 3835–3853. doi: 10.1039/C3CS60346F.

      20. Karolin J. O., Geddes C. D. Reduced lifetimes are directly correlated with excitation irradiance in metal-enhanced fluorescence (MEF). J. Fluoresc. 2012, V. 22, P. 1659–1662.
      doi: 10.1007/s10895-012-1132-3.

      21. Motl N. E., Smith A. F., DeSantisa C. J., Skrabalak S. E. Engineering plasmonic metal colloids through composition and structural design. Chem. Soc. Rev. 2014, V. 43, P. 3823–3834.
      doi: 10.1039/C3CS60347D.

      22. Tovmachenko O. G., Graf C., van den Heuvel D. J., van Blaaderen A., Gerritse H. C. Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv. Mater. J. 2006, V. 18, P. 91–95. doi: 10.1002/adma.200500451.

      23. Chumanov G., Sokolov K., Gregory B. W., Cotton T. M., Cotton T. M. Colloidal metal films as a substrate for surface-enhanced spectroscopy. J. Phys. Chem. 1995, V. 99, Р. 9466–9471.
      doi: 10.1021/j100023a025.

      24. Drozdowicz-Tomsia K., Goldys E. M. Gold and silver nanowires for fluorescence enhancement. Nanowires – Fundamental Research. Hashim A. (Ed.). InTech. 2011, Р. 309–332.
      doi: 10.5772/16330.

      25. Lopatynskyi A. M., Lytvyn V. K., Nazarenko V. I., Guo L. J., Lucas B. D., Chegel V. I. Au nanostructure arrays for plasmonic applications: annealed island films versus nanoimprint lithography. Nanoscale Res. Lett. 2015, V. 10, Р. 99. doi: 10.1186/s11671-015-0819-1.

      26. Krutyakov Yu. A., Kudrinskiy A. A., Olenin A. Yu., Lisichkin G. V. Synthesis and properties of silver nanoparticles: advances and prospects. Russian Chem. Rev. 2008, 77 (3), 233–257.
      doi: 10.1070/RC2008v077n03ABEH003751.

      27. Chen Y., Munechika K., Ginger D. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 2007, V. 3, P. 690–693. doi: 10.1021/nl062795z.

      28. Geddes C., Parfenov A., Roll D., Fang J., Lakowicz J. R. Electrochemical and laser deposition of silver for use in metal-enhanced fluorescence. Langmuir. 2003, V. 15, P. 6236–6241.
      doi: 10.1021/la020930r.

      29. Gartia M. R., Hsiao A., Sivaguru M., Chen Yi., Liu G. L. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate. Nanotechnology. 2011, 22 (36), 365203.
      doi: 10.1088/0957-4484/22/36/365203.

      30. Kruszewski S., Wybranowski T., Cyrankiewicz M., Ziomkowska B., Pawlaczyk A. Enhancement of FITC fluorescence by silver colloids and silver island films. Acta Phys. Polon. 2008, 113 (6), 1599–1608.

      31. Kang K. A., Wang J., Jasinski J. B., Achilefu S. Fluorescence manipulation by gold nanoparticles: from complete quenching to extensive enhancement. J. Nanobiotechnol. 2011, 9 (16), 1–13.
      doi: 10.1186/1477-3155-9-16.

      32. Sokolov K., Chumanov G., Cotton T. M. Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal. Chem. 1998, V. 70, P. 3898–3905. doi: 10.1021/ac9712310.

      33. Dragan A. I., Geddes C. D. Excitation volumetric effects (EVE) in metal enhanced fluorescence. Phys. Chem. Chem. Phys. 2011, V. 13, P. 3831–3838. doi: 10.1039/c0cp01986k.

      34. Aslan K., Leonenko Z., Lakowicz J. R., Geddes Ch. D. Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence. J. Phys. Chem. 2005, V. 8, P. 3157–3162. doi: 10.1021/jp045186t.

      35. Aslan K., Wu M., Lakowicz J. R., Geddes Ch. D. Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J. Am. Chem. Soc. 2007, V. 129, P. 1524–1525. doi:10.1021/ja0680820.

      36. Aslan K., Gryczynski I., Malicka J., Matveeva E., Lakowicz J. R., Geddes Ch. D. Metal-enhanced fluorescence: an emerging tool in biotechnology. Current Opinion in Biotechnology. 2005, V. 16, P. 55–62. doi: 10.1016/j.copbio.2005.01.001.

      37. Geddes Ch. D., Cao H., Gryczynski I., Gryczynski Z., Fang J., Lakowicz J. R. Metal-enhanced fluorescence due to silver colloids on a planar surface: potential applications of indocyanine green to in vivo imaging. J. Phys. Chem. 2003, V. 18, P. 3443–3449. doi: 10.1021/jp022040q.

      38. Ray K., Badugu R., Lakowicz J. R. Polyelectrolyte layer-by-layer assembly to control the distance between fluorophores and plasmonic nanostructures. Chem. Mater. 2007, V. 19, P. 5902–5909. doi: 10.1021/cm071510w.

      39. Aslan K., Malyn S., Geddes Ch. D. Metal-enhanced fluorescence from gold surfaces: angular dependent emission. J. Fluoresc. 2007, 17 (7), 13. doi: 10.1007/s10895-006-0149-x.

      40. Leonard K., You J., Takahashi Y., Yonemura H., Kurawaki J., Yamada S. Enhanced photoelectrochemical response of polythiophene photoelectrodes with controlled arrays of silver nanocubes. J. Phys. Chem. C. 2015, V. 119, P. 8829−8837. doi: 10.1021/jp5114366.

      41. Chen Y., Munechika K., Ginger D. S. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 2007, 7 (3), 690–696. doi: 10.1021/nl062795z.

      42. Zhang J., Fu Yi., Chowdhury M. H., Lakowicz J. R. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. Nano Lett. 2007, V. 7, P. 2101–2107. doi: 10.1021/nl071084d.

      43. Xu Sh., Cao Ya, Zhou Ji, Wang Xinnan, Wang Xumei, Xu W. Plasmonic enhancement of fluorescence on silver nanoparticle films. Nanotechnology. 2011, 22 (27), 275715.
      doi: 10.1088/0957-4484/22/27/275715.

      44. Raino G., Stöferle Th., Park Ch., Kim Ho-Ch., Topuria T., Rice Ph. M., Chin In-Joo, Miller R. D., Mahrt R. F. Plasmonic nanohybrid with ultrasmall Ag nanoparticles and fluorescent dyes. ACS Nano. 2011, V. 5, P. 3536–3541. doi: 10.1021/nn102717z.

      45. Chumanov G., Sokolov K., Gregory B. W., Cotton T. M. Colloidal metal films as a substrate for surface-enhanced spectroscopy. J. Phys. Chem. 1995, V. 99, P. 9466–9471.
      doi: 10.1021/j100023a025.

      46. Anger P., Bharadwaj P., Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Let. 2006, V. 96, 113002 (1–4). doi: 10.1103/PhysRevLett.96.113002.

      47. Bek A., Jansen R., Ringler M., Mayilo S., Klar Th. A., Feldmann J. Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. Nano Lett. 2008, V. 2, P. 485–490.
      doi: 10.1021/nl072602n.

      48. Bharadwaj P., Anger P., Novotny L. Nanoplasmonic enhancement of single-molecule fluorescence. Nanotechnology. 2007, V. 18, P. 044017. doi: 10.1088/0957-4484/18/4/044017.

      49. Matveeva E., Gryczynski Z., Malicka J., Gryczynski I., Lakowicz J. R. Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces. Anal. Biochem. 2004, V. 334, P. 303–311. doi: 10.1016/j.ab.2004.08.034.

      50. Kühn S., Hakanson U., Rogobete L., Sandoghdar V. On-command enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna. Phys. Rev. Lett. 2005, V. 97, P. 017402. doi: 10.1103/PhysRevLett.97.017402.

      51. Iosin M., Baldeck P., Astilean S. Plasmon-enhanced fluorescence of dye molecules. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2009, V. 267, P. 403–405. doi: 10.1016/j.nimb.2008.10.055.

      52. Bharadwaj P., Novotny L. Spectral dependence of single molecule fluorescence enhancement. Opt. Exp. 2007, V. 21, P. 14266–14274. doi: 10.1364/OE.15.014266.

      53. Chegel V. I. Nanostructured materials for biosensor applications: comparative review of preparation methods, Chap. 13 in Manipulation of nanoscale materials: an introduction to nanoarchitectonics. Ed. K. Ariga. P. 318–355. RSC Nanoscience & Nanotechnology. V. 24. Cambridge, UK (2012). doi: 10.1039/9781849735124-00318.

      54. Chegel V., Lucas B., Guo J., Lopatynskyi A., Lopatynska O., Poperenko L. Detection of biomolecules using optoelectronic biosensor based on localized surface plasmon resonance. Nanoimprint lithography approach. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2009, 12 (1), 91–97.


Additional menu

Site search

Site navigation

Home Archive 2015 №5 HIGH-CONDUCTIVE NANOSTRUCTURES IN BIOCHEMICAL STUDIES: FLUORESCENCE ENHANCING V. I. Chegel, A. M. Lopatynskyi, V. К. Lytvyn, O. M. Naum, V. I. Nazarenko, А. P. Demchenkо

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
for information: