Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2015 №5 ABSCISIC ACID AND ETHYLENE PRODUCTION BY BIOTECHNOLOGICAL STRAINS OFBradyrhizobium japonicum N. O. Leonova
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta
Т. 8, № 5, 2015

"Biotechnologia Acta" V. 8, No 5, 2015
https://doi.org/10.15407/biotech8.05.064
Р. 64-70, Bibliography 25, English
Universal Decimal Classification: 579.222.3 + 577.175.15 + 631.847.211

ABSCISIC ACID AND ETHYLENE PRODUCTION BY   BIOTECHNOLOGICAL STRAINS OF Bradyrhizobium japonicum

N. O. Leonova

Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv

The aim of the work was to research the production of phytohormones that inhibits the plants growth and development – abscisic acid and ethylene by various nitrogen–fixing symbiotic efficiency biotechnological strains of Bradyrhizobium japonicum under the conditions in vitro. The amounts of abscisic acid were determined by TLC-spectrodensitometry and that of ethylene – by gas chromatography.

It was shown that symbiotic nitrogen–fixing bacteria of soybean were able to synthesize abscisic acid (56.5–72.0 µg / g of absolutely dry biomass) and ethylene (0.046–3.461 nmol/h•g of absolutely dry biomass). It was revealed that the differences in amounts of abscisic acid and ethylene in B. japonicum were strains properties and they were not related directly to conditions of cultivation, nitrogenase activity of the bacteria and their effectiveness in symbiosis with soybean plants. The ability of biotechnological strains of B. japonicum to synthesize the phytohormones inhibiting the plant growth and development under the conditions in vitro may be an additional factor that increases virulence of the bacteria and determines their potential activity in infection of plants. The data obtained are important for development of the technology of microbiological preparations–legume inoculants with combined properties.

Key words: Bradyrhizobium japonicum, abscisic acid, ethylene, symbiosis, soybean.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

  • References
    • 1. Desbrosses G. J., Stougaard J. Root nodulation: A paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe. 2011, 10 (4), 348–358.
      http://dx.doi.org/10.1016/j.chom.2011.09.005

      2. Tsavkelova E. A., Klimova S. Yu., Cherdyntseva T. A., Netrusov A. I. Hormones and hormone-like substances of microorganisms: a review. Appl. Biochem. Microbiol. 2006, 42 (3), 229235.
      http://dx.doi.org/10.1134/S000368380603001X

      3. Spaepen S., Vanderleyden J., Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 2007, V. 31, P. 425–448.
      http://dx.doi.org/10.1111/j.1574-6976.2007.00072.x

      4. The rhizosphere: biochemistry and organic substances at the soil-plant interface. – 2nd ed. R. Pinton, Z. Varanini, P. Nannipieri (Ed.). Boca Raton, FL: CRC Press. 2007, 472 p.
      http://dx.doi.org/10.1201/9781420005585

      5. Boiero L., Perrig D., Masciarelli O., Penna C., Cassan F., Luna V. Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl. Microbiol. Biotechnol. 2007, V. 74, P. 874880.
      http://dx.doi.org/10.1007/s00253-006-0731-9

      6. Ferguson B. J., Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J. Chem. Ecol. 2014, 40 (7), 770790.
      http://dx.doi.org/10.1007/s10886-014-0472-7

      7. Mohd-Radzman N. A., Djordjevic M. A., Imin N. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules. Front. Plant Sci. 2013, V. 4, Art. 385. http://dx.doi.org/10.3389/fpls.2013.00385.

      8. Dragovoz I. V., Leonova N. O., Biliavska L. O., Yavorska V. K. Phytohormone production by some free-living and symbiotic soil microorganisms. Reports of the NASU. 2010, V. 12, P. 154–159. (In Ukrainian).

      9. Dragovoz I. V., Leonova N. O., Iutynska G. O. Phytohormones synthesis by Bradyrhizobium japonicum strains with different symbiotic effectiveness. Mikrobiol. Zh. 2011, 73 (4), 2935. (In Russian).

      10. Sytnikov D. M., Kots S. Y. Symbiotic properties of the soybean nodule bacteria inactive strain 604k. Plant Physiology: problems and prospects: in 2 is. Ed. V. V. Morgun. Kyiv: Logos. 2009. Is. 1, P. 466–470. (In Russian).

      11. Methodical recommendations by phytohormones definition. Kyiv: Inst. of Botany of NASU. 1988, 78 p. (In Russian).

      12. Savinskiy S. V., Kofman I. Sh., Kofanov V. I., Stasevskaya I. L. Methodological approaches to the determination of plant hormones using spectrodensitometry thin layer chromatography. Physiol. Biochem. Cult. Plants. 1987, 19 (2), 210–215. (In Russian).

      13. Tominaga A., Nagata M., Futsuki K., Abe H., Uchiumi T., Abe M., Kucho K., Hashiguchi M., Akashi R., Hirsch A. M., Arima S., Suzuki A. Effect of abscisic acid on symbiotic nitrogen fixation activity in the root nodules of Lotus japonicus. Plant Signal Behav. 2010, 5 (4), 440–443.
      http://dx.doi.org/10.4161/psb.5.4.10849

      14. Tominaga A., Nagata M., Futsuki K., Abe H., Uchiumi T., Abe M., Kucho K., Hashiguchi M., Akashi R., Hirsch A. M., Arima S., Suzuki A. Enhanced nodulation and nitrogen fixation in the abscisic acid low-sensitive mutant enhanced nitrogen fixation of Lotus japonicus. Plant Physiol. 2009, 151 (4), 1965–1976. doi: 10.1104/pp.109.142638.

      15. Mauch-Mani B., Mauch F. The role of abscisic acid in plantpathogen interactions. Cur. Opin. Plant Biol. 2005, V. 8, P. 409–414.
      http://dx.doi.org/10.1016/j.pbi.2005.05.015

      16. Nambara E., Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 2005, V. 56, P. 165–185.
      http://dx.doi.org/10.1146/annurev.arplant.56.032604.144046

      17. Suzuki A., Akune M., Kogiso M., Imagama K., Osuki K., Uchiumi T., Higashi S., Han S., Yoshida S., Asami T., Abe M. Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant Cell Physiol. 2004, 45 (7), 914–922.
      http://dx.doi.org/10.1093/pcp/pch107

      18. Suzaki T., Kawaguchi M. Root nodulation: a developmental program involving cell fate conversion triggered by symbiotic bacterial infection. Current Opin. Plant Biol. 2014, 21 (10), 16–22.
      http://dx.doi.org/10.1016/j.pbi.2014.06.002

      19. Ding Y., Kalo P., Yendrek C., Sun J., Liang Y., Marsh J. F., Harris J. M., Oldroyda Giles E. D. Abscisic acid coordinates Nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell. 2008, 20 (10), 2681–2695. doi: 10.1105/tpc.108.061739.

      20. Biswas B., Chan P. K., Gresshoff P. M. A novel ABA insensitive mutant of Lotus japonicus with a wilty phenotype displays unaltered nodulation regulation. Mol Plant. 2009, 2 (3), 487–499. doi: 10.1093/mp/ssp009.

      21. Dilworth M. J., James E. K., Sprent J. I., Newton W. E. Nitrogen-fixing leguminous symbioses. Springer Science & Business Media. 2008, 403 p.

      22. Khatabi B., Schäfer P. Ethylene in mutualistic symbioses. Plant Signal Behav. 2012, 7 (12), 1634–1638. doi: 10.4161/psb.22471.

      23. Xu J., Zhang Sh. Regulation of ethylene biosynthesis and signaling by protein kinases and phosphatases. Mol. Plant. 2014, 7 (6), 939–942. doi: http://dx.doi.org/10.1093/mp/ssu059.

      24. Arshad M., Khalid A., Shahzad Sh. M., Mahmood T. Role of ethylene and bacterial ACC deaminase in nodulation of legumes In. Microbes for legume improvement. Vienna: Springer. 2010, P. 103–122. doi: 10.1007/978-3-211-99753-6_5.

      25. Adie B., Chico J. M., Rubio-Somoza I., Solano R. Modulation of plant defenses by ethylene. J. Plant Growth Regul. 2007, V. 26, P. 160–77. http://dx.doi.org/10.1007/s00344-007-0012-6.


1. Desbrosses G. J., Stougaard J. Root nodulation: A paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe. 2011, 10 (4), 348–358.

2. Tsavkelova E. A., Klimova S. Yu., Cherdyntseva T. A., Netrusov A. I. Hormones and hormone-like substances of microorganisms: a review. Appl. Biochem. Microbiol. 2006, 42 (3), 229235.

3. Spaepen S., Vanderleyden J., Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 2007, V. 31, P. 425–448.

4. The rhizosphere: biochemistry and organic substances at the soil-plant interface. – 2nd ed. R. Pinton, Z. Varanini, P. Nannipieri (Ed.). Boca Raton, FL: CRC Press. 2007, 472 p.

5. Boiero L., Perrig D., Masciarelli O., Penna C., Cassan F., Luna V. Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl. Microbiol. Biotechnol. 2007, V. 74, P. 874880.

6. Ferguson B. J., Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J. Chem. Ecol. 2014, 40 (7), 770790.

7. Mohd-Radzman N. A., Djordjevic M. A., Imin N. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules. Front. Plant Sci. 2013, V. 4, Art. 385. http://dx.doi.org/10.3389/fpls.2013.00385.

8. Dragovoz I. V., Leonova N. O., Biliavska L. O., Yavorska V. K. Phytohormone production by some free-living and symbiotic soil microorganisms. Reports of the NASU. 2010, V. 12, P. 154–159. (In Ukrainian).

9. Dragovoz I. V., Leonova N. O., Iutynska G. O. Phytohormones synthesis by Bradyrhizobium japonicum strains with different symbiotic effectiveness. Mikrobiol. Zh. 2011, 73 (4), 2935. (In Russian).

10. Sytnikov D. M., Kots S. Y. Symbiotic properties of the soybean nodule bacteria inactive strain 604k. Plant Physiology: problems and prospects: in 2 is. Ed. V. V. Morgun. Kyiv: Logos. 2009. Is. 1, P. 466–470. (In Russian).

11. Methodical recommendations by phytohormones definition. Kyiv: Inst. of Botany of NASU. 1988, 78 p. (In Russian).

12. Savinskiy S. V., Kofman I. Sh., Kofanov V. I., Stasevskaya I. L. Methodological approaches to the determination of plant hormones using spectrodensitometry thin layer chromatography. Physiol. Biochem. Cult. Plants. 1987, 19 (2), 210–215. (In Russian).

13. Tominaga A., Nagata M., Futsuki K., Abe H., Uchiumi T., Abe M., Kucho K., Hashiguchi M., Akashi R., Hirsch A. M., Arima S., Suzuki A. Effect of abscisic acid on symbiotic nitrogen fixation activity in the root nodules of Lotus japonicus. Plant Signal Behav. 2010, 5 (4), 440–443.

14. Tominaga A., Nagata M., Futsuki K., Abe H., Uchiumi T., Abe M., Kucho K., Hashiguchi M., Akashi R., Hirsch A. M., Arima S., Suzuki A. Enhanced nodulation and nitrogen fixation in the abscisic acid low-sensitive mutant enhanced nitrogen fixation of Lotus japonicus. Plant Physiol. 2009, 151 (4), 1965–1976. doi: 10.1104/pp.109.142638.

15. Mauch-Mani B., Mauch F. The role of abscisic acid in plantpathogen interactions. Cur. Opin. Plant Biol. 2005, V. 8, P. 409–414.

16. Nambara E., Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 2005, V. 56, P. 165–185.

17. Suzuki A., Akune M., Kogiso M., Imagama K., Osuki K., Uchiumi T., Higashi S., Han S., Yoshida S., Asami T., Abe M. Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant Cell Physiol. 2004, 45 (7), 914–922.

18. Suzaki T., Kawaguchi M. Root nodulation: a developmental program involving cell fate conversion triggered by symbiotic bacterial infection. Current Opin. Plant Biol. 2014, 21 (10), 16–22.

19. Ding Y., Kalo P., Yendrek C., Sun J., Liang Y., Marsh J. F., Harris J. M., Oldroyda Giles E. D. Abscisic acid coordinates Nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell. 2008, 20 (10), 2681–2695. doi: 10.1105/tpc.108.061739.

20. Biswas B., Chan P. K., Gresshoff P. M. A novel ABA insensitive mutant of Lotus japonicus with a wilty phenotype displays unaltered nodulation regulation. Mol Plant. 2009, 2 (3), 487–499. doi: 10.1093/mp/ssp009.

21. Dilworth M. J., James E. K., Sprent J. I., Newton W. E. Nitrogen-fixing leguminous symbioses. Springer Science & Business Media. 2008, 403 p.

22. Khatabi B., Schäfer P. Ethylene in mutualistic symbioses. Plant Signal Behav. 2012, 7 (12), 1634–1638. doi: 10.4161/psb.22471.

23. Xu J., Zhang Sh. Regulation of ethylene biosynthesis and signaling by protein kinases and phosphatases. Mol. Plant. 2014, 7 (6), 939–942. doi: http://dx.doi.org/10.1093/mp/ssu059.

24. Arshad M., Khalid A., Shahzad Sh. M., Mahmood T. Role of ethylene and bacterial ACC deaminase in nodulation of legumes In. Microbes for legume improvement. Vienna: Springer. 2010, P. 103–122. doi: 10.1007/978-3-211-99753-6_5.

25. Adie B., Chico J. M., Rubio-Somoza I., Solano R. Modulation of plant defenses by ethylene. J. Plant Growth Regul. 2007, V. 26, P. 160–77. http://dx.doi.org/10.1007/s00344-007-0012-6.

 

Additional menu

Site search

Site navigation

Home Archive 2015 №5 ABSCISIC ACID AND ETHYLENE PRODUCTION BY BIOTECHNOLOGICAL STRAINS OFBradyrhizobium japonicum N. O. Leonova

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.