Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2014 №5 BIOSYNTHESIS OF SURFACTANTS ON INDUSTRIAL WASTE Pirog T. P., Sofilkanich A. P., Konon A. D., Grytsenko N. A.
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta
V. 7, No 5, 2014

"Biotechnologia Acta" v. 7, no 5, 2014
doi: 10.15407/biotech7.05.009
Р. 9-26, Bibliography 125, Ukrainian.
Universal Decimal classification: 759.873.088.5:661.185

BIOSYNTHESIS OF SURFACTANTS ON INDUSTRIAL WASTE

Pirog T. P., Sofilkanich A. P., Konon A. D., Grytsenko N. A.

National University of Food Technologies, Kyiv, Ukraine

The literature and own experimental data on the synthesis of microbial surfactants of different chemical nature (rhamnolipids, sophorolipids, manozylerythritollipids, lipopeptides) at various waste (vegetable oil and fat, sugar, dairy industry, agriculture, forestry, biodiesel, as well as waste — fried vegetable oils) are presented. Most suitable substrates for the synthesis of microbial surfactants are oil containing waste that, unlike, for example, lignocellulose, whey, technical glycerol do not require pre-treatment and purification.

Replacing traditional substrates for the biosynthesis of surfactant with industrial waste will help to reduce the cost of technology by several times, dispose of unwanted waste, solve the problem of storage or disposal of large amounts of waste from the food industry, agricultural sector and companies that produce biodiesel, which spent large amount of energy and money for such needs

Key words: microbial surfactants, industrial waste.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

  • References
    • 1.  M?ller M. M., K?gler J. H., Henkel M., Gerlitzki M., H?rmann B., P?hnlein M., Syldatk C., Hausmann R. Rhamnolipids — Next generation surfactants? J. Biotechnol. 2012, 162(4), 366–380.
      http://dx.doi.org/10.1016/j.jbiotec.2012.05.022

      2.  Mulligan C. N. Recent advances in the environmental applications of biosurfactants. Cur. Opin. Coll. Inter. Sci. 2009, 14(5), 372–378.
      http://dx.doi.org/10.1016/j.cocis.2009.06.005

      3.  Banat I., Franzetti A., Gandolfi I., Bestetti G.,  Martinotti M., Fracchia L., Smyth T., Marchant R. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 2010, 87(2), 427–444.
      http://dx.doi.org/10.1007/s00253-010-2589-0

      4.  Nitschke M., Costa S. G., Contiero J. Rhamnolipids and PHAs: Recent reports on Pseudomonas­derived molecules of increasing industrial interest. Proc. Biochem. 2011, 46(3), 621–630.
      http://dx.doi.org/10.1016/j.procbio.2010.12.012

      5.  Henkel M., M?ller M. M., K?gler J. H., Lovaglio R. B., Contiero J., Syldatk C., Hausmann R. Rhamnolipids as biosurfactants from  renewable resources: Concepts for next­generation rhamnolipid production. Proc. Biochem. 2012, 47(8), 1207–1219
      .http://dx.doi.org/10.1016/j.procbio.2012.04.018

      6.  Syldatk C., Hausmann R. Microbial biosurfactants. Eur. J. Lipid Sci. Technol. 2010, 112(6), 615–616.
      http://dx.doi.org/10.1002/ejlt.201000294

      7.  Costa S. G., Nitschke M., L?pine F., D?ziel E., Contiero J. Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2­1 from cassava wastewater. Proc. Biochem. 2010, 45(9), 1511–1516.
      http://dx.doi.org/10.1016/j.procbio.2010.05.033

      8.  Makkar R. S., Cameotra S. S., Banat I. M. Advances in utilization of renewable substrates for biosurfactant production. AMB Express. 2011, 1:5.
      doi: 10.1186/2191­0855­1­5.

      9.  Van Bogaert I. N. A., Zhang J., Soetaert W. Microbial synthesis of sophorolipids. Proc. Biochem. 2011, 46(4), 821–833.
      http://dx.doi.org/10.1016/j.procbio.2011.01.010

      10.  Octave S., Thomas D. Biorefinery: Toward an industrial metabolism. Biochimie. 2009, 91(6), 659–664.
      http://dx.doi.org/10.1016/j.biochi.2009.03.015

      11.  Lomascolo A., Uzan­Boukhris E., Sigoillot J.­C.,  Fine F. Rapeseed and sunflower meal:  a review on biotechnology status and challenges. Appl. Microbiol. Biotechnol. 2012, 95(5), 1105–1114.
      http://dx.doi.org/10.1007/s00253-012-4250-6

      12.  Willke T., Vorlop K. D. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl. Microbiol. Biotechnol. 2004, 66(2), 132–142.
      http://dx.doi.org/10.1007/s00253-004-1733-0

      13.  Makkar R. S., Cameotra S. S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl. Microbiol. Biotechnol. 2002, 58(4), 428–434.
      http://dx.doi.org/10.1007/s00253-001-0924-1

      14.  Thavasi R., Jayalakshmi S., Balasubramanian T., Banat I. M. Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake. Lett. Appl. Microbiol. 2007, 45(6), 686–691.
      http://dx.doi.org/10.1111/j.1472-765X.2007.02256.x

      15.  Shumkova E. S., Solyanikova I. P., Plotnikova E. G., Golovleva L. A. Phenol degradation by Rhodococcus opacus strain 1G. Prikladnaia biochimiia i microbiolohiia. 2009, 45(1), 43–49. (In Russian).

      16.  Homenko L. A., Nogina T. M., Pidgors’kij V. S. The ability of strains of Rhodococcus erythropolis utilization of mineral motor oils and their resistance to certain stressors. Naukovi zapysky. Biolohiia ta ekolohiia. 2005, 43, 38–42. (In Ukrainian).

      17.  Adav S. S., Chen M. Y., Lee D. J., Ren N. Q. Degradation of phenol by Acinetobacter strain isolated from aerobic granules. Chemosphere. 2007, 67(8), 1566–1572.
      http://dx.doi.org/10.1016/j.chemosphere.2006.11.067

      18.  Cao B., Nagarajan K., Loh K. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl. Microbiol. Biotechnol. 2009, 85(2), P. 207–228.
      http://dx.doi.org/10.1007/s00253-009-2192-4

      19.  Ren H. S., Wang Y., Zhao H. B., Cai B. L. Isolation and identification of phenol­degrading strains and the application in biotreatment of phenol­containing waste­water. Huan Jing Ke Xue. 2008, 29(2), P.482–487.

      20.  Wang Y., Tian Y., Han B., Zhao H. B., Bi J. N., Cai B. L. Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J. Environ. Sci. 2007, 19(2), 222–225.
      http://dx.doi.org/10.1016/S1001-0742(07)60036-9

      21.  Rocha L. L., de Aguiar Cordeiro A. R., Cavalcante R. M., do Nascimento R. F., Martins S. C.,  Santaella S. T., Melo V. M. Isolation and characterization of phenol degrading yeasts from an oil refinery wastewater in Brazil. Mycopathologia. 2007, 164(4), 183–188.
      http://dx.doi.org/10.1007/s11046-007-9043-6

      22.  Li X., Li A., Liu C., Yang J., Ma F., Hou N.,  Xu Y., Ren N. Characterization of the extracellular biodemulsifier of Bacillus mojavensis XH1 and the enhancement of demulsifying efficiency by optimization of the production medium composition. Proc. Biochem. 2012, 47(4), 626–634.
      http://dx.doi.org/10.1016/j.procbio.2012.01.004

      23.  Dumont M. J., Narine S. S. Soapstock and deodorizer distillates from North American vegetable oils: Review on their characterization, extraction and utilization. Food Res. International. 2007, 40(8), 957–974.
      http://dx.doi.org/10.1016/j.foodres.2007.06.006

      24.  Oliveira F. J. S., Vazquez L., de Campos N. P., de Fran?a F. P. Production of rhamnolipids by a Pseudomonas alcaligenes strain. Proc. Biochem. 2009, 44(4), 383–389.
      http://dx.doi.org/10.1016/j.procbio.2008.11.014

      25.  Mercade M. E., Manresa M. A., Robert M., Espuny M. J., de Andres C., Guinea J. Olive oil mill effluent (OOME). New substrate for biosurfactant production. Bioresour. Technol. 1993, 43(1), 1–6.
      http://dx.doi.org/10.1016/0960-8524(93)90074-L

      26.  Kitamoto D., Yanagishita H., Shinbo T., Nakane T., Kamisawa C., Nakahara T. Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J. Biotechnol. 1993, 29(1), 91–96.
      http://dx.doi.org/10.1016/0168-1656(93)90042-L

      27.  Casas J., Garcia­Ochoa F. Sophorolipid production by Candida bombicola medium composition and culture methods. J. Biosci. Bioeng. 1999, 88(5), 488–494.
      http://dx.doi.org/10.1016/S1389-1723(00)87664-1

      28.  Rau U., Hammen S., Heckmann R., Wray V.,  Lang S. Sophorolipids: a source for novel compounds. Ind. Crops Prod. 2001, 13(2), 85–92.
      http://dx.doi.org/10.1016/S0926-6690(00)00055-8

      29.  Vollbrecht E., Rau U., Lang S. Microbial conversion of vegetable oils into surfaceactive di­, tri­, and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurella spec. Lipid/Fett. 1999, 101(10), 389–394.

      30.  Trummler K., Effenberger F., Syldatk C.  An integrated microbial/enzymatic process for production of rhamnolipids and  L­(+)­rhamnose from rapeseed oil with Pseudomonas sp. DSM 2874. Eur. J. Lipid Sci. Technol. 2003, 105(10), 563–571.
      http://dx.doi.org/10.1002/ejlt.200300816

      31.  Thaniyavarn J., Chongchin A., Wanitsuksombut N., Thaniyavarn S., Pinphanichakarn P., Leepipatpiboon N., Morikawa M., Kanaya S. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. J. Gen. Appl. Microbiol. 2006, 52(4), 215–222.
      http://dx.doi.org/10.2323/jgam.52.215

      32.  Pornsunthorntawee O., Arttaweeporn N., Paisanjit S., Somboonthanate P., Abe M., Rujiravanit R., Chavadej S. Isolation and comparison of biosurfactants produced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial surfactant­enhanced oil recovery. Biochem. Eng. J. 2008, 42(2), 172–179.
      http://dx.doi.org/10.1016/j.bej.2008.06.016

      33.  Abouseoud M., Maachi R., Amrane A., Boudergua S., Nabi A. Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination. 2008, 223(1–3), 143–151.
      http://dx.doi.org/10.1016/j.desal.2007.01.198

      34.  Monteiro A. S., Coutinho J. O., J?nior A. C.,  Rosa C. A., Siqueira E. P., Santos V. L. Characterization of new biosurfactant produced by Trichosporon montevideense CLOA 72 isolated from dairy industry effluents. J. Basic. Microbiol. 2009, 49(6), 553–563.
      http://dx.doi.org/10.1002/jobm.200900089

      35.  Daverey A., Pakshirajan K. Production, characterization, and properties of sophorolipids from the yeast Candida bombicola using a low­cost fermentative medium. Appl. Biochem. Biotechnol. 2009, 158(3), 663–674.
      http://dx.doi.org/10.1007/s12010-008-8449-z

      36.  Daverey A., Pakshirajan K. Kinetics of growth and enhanced sophorolipids production by Candida bombicola using a low­cost fermentative medium. Appl. Biochem. Biotechnol. 2010, 160(7), 2090–2101.
      http://dx.doi.org/10.1007/s12010-009-8797-3

      37.  M?ller M., H?rmann B., Syldatk C., Haus­mann R. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl. Biochem. Biotech­nol. 2010, 87(1), 167–174.
      http://dx.doi.org/10.1007/s00253-010-2513-7

      38.  Abalos A., Pinazo A., Infante M. R., Casals M., Garc?a F., Manresa A. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 2001, 17(5), 1367–1371.
      http://dx.doi.org/10.1021/la0011735

      39.  Benincasa M., Contiero J., Manresa M. A., Moraes I. O. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J. Food Eng. 2002, 54(4), 283–288.
      http://dx.doi.org/10.1016/S0260-8774(01)00214-X

      40.  Nitschke M., Costa S. G., Haddad R., Goncalves L. A., Eberlin M. N., Contiero J. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol. Prog. 2005, 21(5), 1562–1566.
      http://dx.doi.org/10.1021/bp050198x

      41.  Nitschke M., Costa S. G., Contiero J. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Appl. Biochem. Biotechnol. 2010, 160(7), 2066–2074.
      http://dx.doi.org/10.1007/s12010-009-8707-8

      42.  Deak N., Johnson L. Functional properties of protein ingredients prepared from high­sucrose/low­stachyose soybeans. J. Am. Oil Chem. Soc. (JAOCS). 2006, 83(9), 811–818.
      http://dx.doi.org/10.1007/s11746-006-5019-9

      43.  Solaiman D. K., Ashby R. D., Nu?ez A., Fog­lia T. A. Production of sophorolipids by Candida bombicola grown on soy molasses as substrate. Biotechnol. Lett. 2004, 26(15),1241–1245.
      http://dx.doi.org/10.1023/B:BILE.0000036605.80577.30

      44.  Solaiman D., Ashby R., Zerkowski J., Foglia T. Simplified soy molasses­based medium for reduced­cost production of sophorolipids by Candida bombicola. Biotechnol. Lett. 2007, 29(9), 1341–1347.
      http://dx.doi.org/10.1007/s10529-007-9407-5

      45.  Thavasi R., Jayalakshmi S., Balasubramanian T., Banat I. Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J. Microbiol. Biotechnol. 2008, 24(7), 917–925.
      http://dx.doi.org/10.1007/s11274-007-9609-y

      46.  Thavasi R., Jayalakshmi S., Banat I. M. Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour. Technol. 2011, 102(3), 3366–3372.
      http://dx.doi.org/10.1016/j.biortech.2010.11.071

      47.  Jadhav M., Kagalkar A., Jadhav S., Govin­d­ war S. Isolation, characterization, and antifungal application of a biosurfactant produced by Enterobacter sp. MS16. Eur. J. Li­pid Sci. Technol. 2011, 113(11), 1347–1356.
      http://dx.doi.org/10.1002/ejlt.201100023

      48.  Shah V., Jurjevic M., Badia D. Utilization of restaurant waste oil as a precursor for sophorolipid production. Biotechnol. Prog. 2007, 23(2), 512–515
      http://dx.doi.org/10.1021/bp0602909

      49.  Liu J., Peng K., Huang X., Lu L., Cheng H.,  Yang D., Zhou Q., Deng H. Application of waste frying oils in the biosynthesis of biodemulsifier by a demulsifying strain Alcaligenes sp. S­XJ­1. J. Environ. Sci. (China). 2011, 23(6), 1020–1026.
      http://dx.doi.org/10.1016/S1001-0742(10)60508-6

      50.  Xia W. J., Luo Z. B., Dong H. P., Yu L., Cui Q. F.,  Bi Y. Q. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous Pseudomonas aeruginosa WJ­1 using waste vegetable oils. Appl. Biochem. Biotechnol. 2012, 166(5), 1148–1166.
      http://dx.doi.org/10.1007/s12010-011-9501-y

      51.  Zhang Q., Saleh A. S., Chen J., Shen Q. Che­mi­cal alterations taken place during deep­fat frying based on certain reaction products: A review. Chem. Phys. Lipids. 2012, 165(6), 662–681.
      http://dx.doi.org/10.1016/j.chemphyslip.2012.07.002

      52.  Haba E., Espuny M. J., Busquets M., Manresa A. Screening and production of rhamnolipids Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J. Appl. Microbiol. 2000, 88(3), 379–387.
      http://dx.doi.org/10.1046/j.1365-2672.2000.00961.x

      53.  Raza Z. A., Khan M. S., Khalid M. Z., Rehman A. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Biotechnol. Lett. 2006, 28(20), 1623–1631.
      http://dx.doi.org/10.1007/s10529-006-9134-3

      54.  Zhu Y., Gan J., Zhang G., Yao B., Zhu W.,  Meng Q. Reuse of waste frying oil for production of rhamnolipids using Pseudomonas aeruginosa zju. u1M. J. Zhejiang Univ. Sci. A. 2007, 8(9), 1514–1520.
      http://dx.doi.org/10.1631/jzus.2007.A1514

      55.  Sadouk Z., Hacene H., Tazerouti A. Biosurfactants production from low cost substrate and degradation of diesel oil by a Rhodococcus strain. Oil Gas Sci. Technol. 2008, 63(6), 747–753.
      http://dx.doi.org/10.2516/ogst:2008037

      56.  De Lima C., Ribeiro E., S?rvulo E., Resende M.,  Cardoso V. Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil. Appl. Biochem. Biotechnol. 2009, 152(1), 156–168.
      http://dx.doi.org/10.1007/s12010-008-8188-1

      57.  Liu J., Huang X. F., Lu L. J., Xu J. C., Wen Y.,  Yang D. H., Zhou Q. Comparison between waste frying oil and paraffin as carbon source in the production of biodemulsifier by Dietzia sp. S­JS­1. Bioresour. Technol. 2009, 100(24), 6481–6487.
      http://dx.doi.org/10.1016/j.biortech.2009.07.006

      58.  Wadekar S. D., Kale S. B., Lali A. M., Bhowmick D. N., Pratap A. P. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source. Prep. Biochem. Biotechnol. 2012, 42(4), 249–266.
      http://dx.doi.org/10.1080/10826068.2011.603000

      59.  Pirog T. P., Shevchuk T. A., Voloshina I. N., Grechirchak N. N. Use of claydite­immobilized oil­oxidizing microbial cells for purification of water from oil. Appl. Biochem. Microbiol. 2005, 41(1), 51–55.
      http://dx.doi.org/10.1007/s10438-005-0010-z

      60.  Pirog T. P., Antonyuk S. I., Karpenko Ye. V., Shevchuk T. A. The influence of conditions of Acinetobacter calcoaceticus K­4 strain cultivation on surface­active substances synthesis. Appl. Biochem. Microbiol. 2009, 45(3), 272 — 278.
      http://dx.doi.org/10.1134/S0003683809030065

      61.  Pirog T. P., Gricenko N. A., Homiak D. I., Konon A. D., Antoniuk S. I. Optimization of synthesis of biosurfactants of Nocardia vaccinii K­8 under bioconversion of biodiesel production waste. Mikrobiol. zh. 2011, 73(4), 15–23. (In Russian).

      62.  Pirog T. P., Ignatenko S. V. Scaling of the process of biosynthesis of surfactants by Rhodococcus erythropolis EK­1 on hexadecane. Appl. Biochem. Microbiol. 2011, 47(4), 393–399.
      http://dx.doi.org/10.1134/S0003683811040120

      63.  Pidgorskii V. S., Iutinska G. O., Pirog T. P. Intensification of technologies microbial synthesis. Kyiv: Nauk. dumka. 2010, 327 p. (In Ukrainian).

      64.  Zulfiqar A. R., Muhammad S. K., Zafar M. K.,  Asma R. Production kinetics tensioactive cha­racteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Biotechnol. Lett. 2006, 28(20), 1623–1631.
      http://dx.doi.org/10.1007/s10529-006-9134-3

      65.  Cha M., Lee N., Kim M., Kim M., Lee S. Hete­rologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudo­monas putida. Bioresour. Technol. 2008, 99(7), 2192–2199.
      http://dx.doi.org/10.1016/j.biortech.2007.05.035

      66.  Abbasi H., Hamedi M. M., Lotfabad T. B.,  Zahiri H. S., Sharafi H., Masoomi F., Moosavi­Movahedi A. A., Ortiz A., Amanlou M., Noghabi K. A. Biosurfactant­producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical structural characteristics of isolated biosurfactant. J. Biosci. Bioeng. 2012, 113(2), 211–219.
      http://dx.doi.org/10.1016/j.jbiosc.2011.10.002

      67.  Sanket J., Chirag B., Sujata J., Sanjay Y., Anuradha N., Desai Anjana J. Biosurfactant production using molasses whey under thermophilic conditions. Bioresour. Technol. 2008, 99(1), 195–199.
      http://dx.doi.org/10.1016/j.biortech.2006.12.010

      68.  Daniel H. J., Otto R. T., Reuss M., Syldatk C. Sophorolipid production with high yields on whey concentrate rapeseed oil without consumption of lactose. Biotechnol. Lett. 1998, 20(8), 805–807.
      http://dx.doi.org/10.1023/B:BILE.0000015927.29348.1a

      69.  Daniel H. J., Reuss M., Syldatk C. Production of sophorolipids in high concentration from deproteinized whey rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotechnol. Lett. 1998, 20(12), 1153–1156.
      http://dx.doi.org/10.1023/A:1005332605003

      70.  Daverey A., Pakshirajan K. Sophorolipids from Candida bombicola using mixed hydrophilic substrates: Production, purification and characterization. Colloids Surf. B. Biointerfaces. 2010, 79(1), 246–253.
      http://dx.doi.org/10.1016/j.colsurfb.2010.04.002

      71.  Dubey K., Juwarkar A. Distillery and curd whey wastes as viable alternative sources for biosurfactant production. J. Microbiol. Biotechnol. 2001, 17(1), 61–69.
      http://dx.doi.org/10.1023/A:1016606509385

      72.  Rodrigues L. R., Teixeira J. A., Oliveira R. Low­cost fermentative medium for bio­sur­factant production by probiotic bacteria. Biochemical. Eng. J. 2006, 32(3), 135–142.
      http://dx.doi.org/10.1016/j.bej.2006.09.012

      73.  Dubey K. V., Charde P. N., Meshram S. U., Shendre L. P., Dubey V. S., Juwarkar A. A. Surface­active potential of biosurfactants produced in curd whey by Pseudomonas aeruginosa strain­PP2 and Kocuria turfanesis strain­J at extreme environmental conditions. Bioresour. Technol. 2012, V. 126, P. 368–374.
      doi: 10.1016/j.biortech.2012.05.024.

      74.  Maneerat S. Biosurfactants from marine microorganisms. Songklanakarin J. Sci. Technol. 2005, 27(6), 1263–1272.

      75.  Maneerat S. Production of biosurfactants using substrates from renewable resources. Songklanakarin J. Sci. Technol. 2005, 27(3), 675–683.

      76.  Ghurye G. L., Vipulanandan C., Willson R. C. A practical approach to biosurfactant production using nonaseptic fermentation of mixed cultures. Biotechnol. Bioeng. 1994, 44(5), 661–666.
      http://dx.doi.org/10.1002/bit.260440514

      77.  Makkar R. S., Cameotra S. S. Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J. Am. Oil Chem. Soc. (JACOS). 1997, 74(7), 887–889.
      http://dx.doi.org/10.1007/s11746-997-0233-7

      78.  Patel R., Desai A. Surface­active properties of rhamnolipids from Pseudomonas aeruginosa GS3. J. Basic Microbiol. 1997, 37(4), 281–286.
      http://dx.doi.org/10.1002/jobm.3620370407

      79.  Rashedi H., Assadi M. M., Bonakdarpour B., Jamshidi E. Environmental importance of rhamnolipid production from molasses as a carbon source. Int. J. Environ. Sci. Technol. 2005, 2(1), 59–62.
      http://dx.doi.org/10.1007/BF03325858

      80.  Raza Z. A., Khan M. S., Khalid Z. M. Physico­chemical and surface­active properties of biosurfactant produced using molasses by a Pseudomonas aeruginosa mutant. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2007, 42(1), 73–80.
      http://dx.doi.org/10.1080/10934520601015784

      81.  Muthusamy K., Gopalakrishnan S., Ravi T. K.,  Sivachidambaram P. Biosurfactants: properties, commercial production and application. Curr. Sci. 2008, 94(6), 736–747.

      82.  Abdel­Mawgoud A. M., Aboulwafa M. M., Hassouna N. A. Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl. Biochem. Biotechnol. 2008, 150(3), 289–303.
      http://dx.doi.org/10.1007/s12010-008-8153-z

      83.  Abdel­Mawgoud A. M., Aboulwafa M. M., Hassouna N. A. Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl. Biochem. Biotechnol. 2008, 150(3), 305–325.
      http://dx.doi.org/10.1007/s12010-008-8155-x

      84.  Onbasli D., Aslim B. Biosurfactant production in sugar beet molasses by some Pseudomonas spp. J. Environ. Biol. 2009, 30(1), 161–163.

      85.  Al­Bahry S. N., Al­Wahaibi Y. M., Elshafie A. E.,  Al­Bemani A. S., Joshi S. J., Al­Makhmari H. S.,  Al­Sulaimani H. S. Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int. Biodeterior. Biodegrad. 2013, V. 81, P. 141–146.
      http://dx.doi.org/10.1016/j.ibiod.2012.01.006

      86.  Saimmai A., Rukadee O., Onlamool T., Sobhon V., Maneerat S. Characterization and phylogenetic analysis of microbial surface active compound­producing bacteria. Appl. Biochem. Biotechnol. 2012, 168(5), 1003–1018.
      http://dx.doi.org/10.1007/s12010-012-9836-z

      87.  Lin C.­W., Wu C.­H., Tran D.­T., Shih M.­C.,  Li W.­H., Wu C.­F. Mixed culture fermen­ta­tion from lignocellulosic materials using thermophilic lignocellulose­degrading anaerobes. Proc. Biochem. 2011, 46(2), 489–493.
      http://dx.doi.org/10.1016/j.procbio.2010.09.024

      88.  Chandel A. K., Singh O. V. Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of “Biofuel”. Appl. Microbiol. Biotechnol. 2011, 89(5), 1289–1303.
      http://dx.doi.org/10.1007/s00253-010-3057-6

      89.  Abdel­Rahman M. A., Tashiro Y., Sonomoto K. Lactic acid production from lignocellulose­derived sugars using lactic acid bacteria: overview and limits. J. Biotechnol. 2011, 156(4), 286–301.
      http://dx.doi.org/10.1016/j.jbiotec.2011.06.017

      90.  Taherzadeh M. J., Karimi K. Acid­based hydrolysis processes for ethanol from lignocellulosic materials: A review. BioRes. 2007, 2(3), 472–499.

      91.  Moldes A. B., Alonso J. L., Parajo J. C. Stra­tegies to improve the bioconversion of processed wood into lactic acid by simultaneous saccharification and fermentation. J. Chem. Technol. Biotechnol. 2001, 76(3), 279–284.
      http://dx.doi.org/10.1002/jsfa.2004

      92.  Bustos G., Moldes A. B., Cruz J. M., Dom?n­guez J. M. Production of lactic acid from vine­trimming wastes and viticulture lees using a simultaneous saccharification fermentation method. J. Sci. Food Agricul. 2005, 85(3), 466–472.
      http://dx.doi.org/10.1002/jsfa.2004

      93.  Sreenath H. K., Moldes A. B., Koegel R. G., Stra­ub R. J. Lactic acid production from agriculture residues. Biotechnol. Lett. 2001, 23(1), 179–184.
      http://dx.doi.org/10.1023/A:1005651117831

      94.  Rodrigues L. R., Teixeira J. A., van der Mei H. C., Oliveira R. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf. B Biointerfaces. 2006, 49(1), 79–86.
      http://dx.doi.org/10.1016/j.colsurfb.2006.03.003

      95.  Portilla­Rivera O. M., Moldes A. B., Torrado A. M., Dom?nguez J. M. Biosurfactants from grape marc: Stability study. J. Biotechnol. 2007,  131(2) (Suppl). doi:10.1016/j.jbiotec.2007.07.837.

      96.  Portilla­Rivera O. M., Moldes A. B., Torrado A. M., Dom?nguez J. M. Lactic acid and biosurfactants production from hydrolyzed distilled grape marc. Proc. Biochem. 2007, 42(6), 1010–1020.
      http://dx.doi.org/10.1016/j.procbio.2007.03.011

      97.  Portilla­Rivera O., Torrado A., Dominguez J. M., Moldes A. B. Stability and emulsifying capacity of biosurfactants obtained from lignocellulosic sources using Lactobacillus pentosus. J. Agric. Food Chem. 2008, 56(17), 8074–8080.
      http://dx.doi.org/10.1021/jf801428x

      98.  Portilla­Rivera O. M., Rivas B., Torrado A., Moldes A. B., Dom?nguez J. M. Revalorisation of vine trimming wastes using Lactobacillus acidophilus and Debaryomyces hansenii. J. Sci. Food Agric. 2008, 88(13), 2298–2308.
      http://dx.doi.org/10.1002/jsfa.3351

      99.  Slivinski C. T., Mallmann E., de Ara?jo J. M.,  Mitchell D. A. Krieger N. Production of surfactin by Bacillus pumilus UFPEDA 448 in solid­state fermentation using a medium based on okara with sugarcane bagasse as a bulking agent. Proc. Biochem. 2012, 47(12), 1848–1856.
      http://dx.doi.org/10.1016/j.procbio.2012.06.014

      100.  Fox S. L., Bala G. A. Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates. Bioresour. Technol. 2000, 75(3), 235–240.
      http://dx.doi.org/10.1016/S0960-8524(00)00059-6

      101.  Thompson D. N., Fox S. L., Bala G. A. Biosurfactants from potato process effluents. Appl. Biochem. Biotechnol. 2000, 84–86(1–9), 917–930.

      102.  Nitschke M., Pastore G. Cassava flour waste­water as a substrate for biosurfactant production. Appl. Biochem. Biotechnol. 2003, 106(1–3), 295–302.
      http://dx.doi.org/10.1385/ABAB:106:1-3:295

      103.  Nitschke M., Pastore G. M. Biosurfactant production by Bacillus subtilis using cassava­processing effluent. Appl. Biochem. Biotechnol. 2004, 112(3), 163–172.
      http://dx.doi.org/10.1385/ABAB:112:3:163

      104.  Nitschke M., Pastore G. M. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour. Technol. 2006, 97(2), 336–341.
      http://dx.doi.org/10.1016/j.biortech.2005.02.044

      105.  Barros F., Ponezi A., Pastore G. Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J. Microbiol. Biotechnol. 2008, 35(9), 1071–1078.
      http://dx.doi.org/10.1007/s10295-008-0385-y

      106.  Das K., Mukherjee A. K. Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial applications of biosurfactants. Proc. Biochem. 2007, 42(8), 1191–1199.
      http://dx.doi.org/10.1016/j.procbio.2007.05.011

      107.  Rivaldi J. D., Sarrouh B. F., Branco R. F.,  de Mancilha I. M., da Silva S. S. Biotechnological utilization of biodiesel­derived glycerol for the production of ribo­nuc­leotides and microbial biomass. Appl. Biochem. Biotechnol. 2012, 167(7), 2054–2067.
      http://dx.doi.org/10.1007/s12010-012-9749-x

      108.  Papanikolaou S., Fakas S., Fick M., Chevalot I., Galiotou­Panayotou M., Komai­tis M., Marc I., Aggelis G. Biotechnological valorisation of raw glycerol discharged after biodiesel (fatty acid methyl esters) manufacturing process: Production of 1,3­propanediol, citric acid and single cell oil. Biomass Bioenergy. 2008, 32(1), 60–71.
      http://dx.doi.org/10.1016/j.biombioe.2007.06.007

      109.  Makri A., Fakas S., Aggelis G. Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour. Technol. 2010, 101(7), 2351–2358.
      http://dx.doi.org/10.1016/j.biortech.2009.11.024

      110.  Asad­ur­Rehman, Saman W. R. G., Nomura N.,  Sato S., Matsumura M. Pre­treatment and utilization of raw glycerol from sunflower oil biodiesel for growth and 1,3­propanediol production by Clostridium butyricum. J. Chem. Technol. Biotechnol. 2008, 83(7), 1072–1080.
      http://dx.doi.org/10.1002/jctb.1917

      111.  Moon C., Ahn J., Kim S. W., Sang B., Um Y.  Effect of biodiesel­derived raw glycerol on 1,3­propanediol production by different microorganisms. Appl. Biochem. Biotechnol. 2010, 161(1–8), 502–510.

      112.  Zhang A., Yang S. T. Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropio­nici. Proc. Biochem. 2009, 44(12), 1346–1351.
      http://dx.doi.org/10.1016/j.procbio.2009.07.013

      113.  Yu K. O., Kim S. W., Han S. O. Reduction of glycerol production to improve ethanol yield in an engineered Saccharomyces cerevisiae using glycerol as a substrate. J. Bacteriol. 2010, 150(2), 209–214.
      http://dx.doi.org/10.1016/j.jbiotec.2010.09.932

      114.  Da Silva G. P., Mack M., Contiero J. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 2009, 27(1), 30–39.
      http://dx.doi.org/10.1016/j.biotechadv.2008.07.006

      115.  Cavalheiro J. M. B. T., de Almeida M. C. M. D.,  Grandfils C., da Fonseca M. M. R. Poly­(3­hydroxybutyrate) production by Cupria­vidus necator using waste glycerol. Proc. Biochem. 2009, 44(5), 509–515.
      http://dx.doi.org/10.1016/j.procbio.2009.01.008

      116.  Silva S. N., Farias C. B., Rufino R. D.,  Luna J. M., Sarubbo L. A. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf. B. Biointerfaces. 2010, 79(1), 174–183.
      http://dx.doi.org/10.1016/j.colsurfb.2010.03.050

      117.  Morita T., Konishi M., Fukuoka T., Imura T.,  Kitamoto D. Microbial conversion of glycerol into glycolipid biosurfactants, manno­sylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317(T). J. Biosci. Bioeng. 2007, 104(1), 78–81.
      http://dx.doi.org/10.1263/jbb.104.78

      118.  Yazdani S. S., Gonzalez R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 2007, 18(3), 213–219.
      http://dx.doi.org/10.1016/j.copbio.2007.05.002

      119.  De Sousa J. R., Correia J. A., de Almeida J. G. L.,  Rodrigues S., Pessoa O. D. L., Melo V. M. M.,  Gon?alves L. R. B. Evaluation of a co­product of biodiesel production as carbon source in the production of biosurfactant by P. aeruginosa MSIC02. Proc. Biochem. 2011, 46(9), 1831–1839.
      http://dx.doi.org/10.1016/j.procbio.2011.06.016

      120.  Zhang G. L., Wu Y. T., Qian X. P., Meng Q. Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids. J. Zhejiang. Univ. Sci. 2005, 6(8), 725–730.
      http://dx.doi.org/10.1631/jzus.2005.B0725

      121.  Monteiro S. A., Sassaki G. L., de Souza L. M.,  Meira J. A., de Ara?jo J. M., Mitchell D. A.,  Ramos L. P., Krieger N. Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem. Phys. Lipids. 2007, 147(1), 1–13.
      http://dx.doi.org/10.1016/j.chemphyslip.2007.02.001

      122.  Das P., Mukherjee S., Sen R. Substrate dependent production of extracellular biosurfactant by a marine bacterium. Bioresour. Technol. 2009, 100(2), 1015–1019.
      http://dx.doi.org/10.1016/j.biortech.2008.07.015

      123.  Liu Y., Koh C. M. J., Ji L. Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresour Technol. 2011, 102(4), 3927–3933.
      http://dx.doi.org/10.1016/j.biortech.2010.11.115

      124.  Posada J. A., Cardona C. A., Gonzalez R. Analysis of the production process of optically pure D­lactic acid from raw glycerol using engineered Escherichia coli strains. Appl. Biochem. Biotechnol. 2012, 166(3), Р. 680–699.

      125.  Louhasakul Y., Cheirsilp B. Industrial waste utilization for low­cost production of raw material oil through microbial fermentation. Appl. Biochem. Biotechnol. 2013, 169(1), 110–122.


 

Additional menu

Site search

Site navigation

Home Archive 2014 №5 BIOSYNTHESIS OF SURFACTANTS ON INDUSTRIAL WASTE Pirog T. P., Sofilkanich A. P., Konon A. D., Grytsenko N. A.

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.