Biotechnologia Acta


  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2014 №5 BIOSYNTHESIS OF SURFACTANTS ON INDUSTRIAL WASTE Pirog T. P., Sofilkanich A. P., Konon A. D., Grytsenko N. A.
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta
V. 7, No 5, 2014

"Biotechnologia Acta" v. 7, no 5, 2014
doi: 10.15407/biotech7.05.009
Р. 9-26, Bibliography 125, Ukrainian.
Universal Decimal classification: 759.873.088.5:661.185


Pirog T. P., Sofilkanich A. P., Konon A. D., Grytsenko N. A.

National University of Food Technologies, Kyiv, Ukraine

The literature and own experimental data on the synthesis of microbial surfactants of different chemical nature (rhamnolipids, sophorolipids, manozylerythritollipids, lipopeptides) at various waste (vegetable oil and fat, sugar, dairy industry, agriculture, forestry, biodiesel, as well as waste — fried vegetable oils) are presented. Most suitable substrates for the synthesis of microbial surfactants are oil containing waste that, unlike, for example, lignocellulose, whey, technical glycerol do not require pre-treatment and purification.

Replacing traditional substrates for the biosynthesis of surfactant with industrial waste will help to reduce the cost of technology by several times, dispose of unwanted waste, solve the problem of storage or disposal of large amounts of waste from the food industry, agricultural sector and companies that produce biodiesel, which spent large amount of energy and money for such needs

Key words: microbial surfactants, industrial waste.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

  • References
    • 1.  M?ller M. M., K?gler J. H., Henkel M., Gerlitzki M., H?rmann B., P?hnlein M., Syldatk C., Hausmann R. Rhamnolipids — Next generation surfactants? J. Biotechnol. 2012, 162(4), 366–380.

      2.  Mulligan C. N. Recent advances in the environmental applications of biosurfactants. Cur. Opin. Coll. Inter. Sci. 2009, 14(5), 372–378.

      3.  Banat I., Franzetti A., Gandolfi I., Bestetti G.,  Martinotti M., Fracchia L., Smyth T., Marchant R. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 2010, 87(2), 427–444.

      4.  Nitschke M., Costa S. G., Contiero J. Rhamnolipids and PHAs: Recent reports on Pseudomonas­derived molecules of increasing industrial interest. Proc. Biochem. 2011, 46(3), 621–630.

      5.  Henkel M., M?ller M. M., K?gler J. H., Lovaglio R. B., Contiero J., Syldatk C., Hausmann R. Rhamnolipids as biosurfactants from  renewable resources: Concepts for next­generation rhamnolipid production. Proc. Biochem. 2012, 47(8), 1207–1219

      6.  Syldatk C., Hausmann R. Microbial biosurfactants. Eur. J. Lipid Sci. Technol. 2010, 112(6), 615–616.

      7.  Costa S. G., Nitschke M., L?pine F., D?ziel E., Contiero J. Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2­1 from cassava wastewater. Proc. Biochem. 2010, 45(9), 1511–1516.

      8.  Makkar R. S., Cameotra S. S., Banat I. M. Advances in utilization of renewable substrates for biosurfactant production. AMB Express. 2011, 1:5.
      doi: 10.1186/2191­0855­1­5.

      9.  Van Bogaert I. N. A., Zhang J., Soetaert W. Microbial synthesis of sophorolipids. Proc. Biochem. 2011, 46(4), 821–833.

      10.  Octave S., Thomas D. Biorefinery: Toward an industrial metabolism. Biochimie. 2009, 91(6), 659–664.

      11.  Lomascolo A., Uzan­Boukhris E., Sigoillot J.­C.,  Fine F. Rapeseed and sunflower meal:  a review on biotechnology status and challenges. Appl. Microbiol. Biotechnol. 2012, 95(5), 1105–1114.

      12.  Willke T., Vorlop K. D. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl. Microbiol. Biotechnol. 2004, 66(2), 132–142.

      13.  Makkar R. S., Cameotra S. S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl. Microbiol. Biotechnol. 2002, 58(4), 428–434.

      14.  Thavasi R., Jayalakshmi S., Balasubramanian T., Banat I. M. Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake. Lett. Appl. Microbiol. 2007, 45(6), 686–691.

      15.  Shumkova E. S., Solyanikova I. P., Plotnikova E. G., Golovleva L. A. Phenol degradation by Rhodococcus opacus strain 1G. Prikladnaia biochimiia i microbiolohiia. 2009, 45(1), 43–49. (In Russian).

      16.  Homenko L. A., Nogina T. M., Pidgors’kij V. S. The ability of strains of Rhodococcus erythropolis utilization of mineral motor oils and their resistance to certain stressors. Naukovi zapysky. Biolohiia ta ekolohiia. 2005, 43, 38–42. (In Ukrainian).

      17.  Adav S. S., Chen M. Y., Lee D. J., Ren N. Q. Degradation of phenol by Acinetobacter strain isolated from aerobic granules. Chemosphere. 2007, 67(8), 1566–1572.

      18.  Cao B., Nagarajan K., Loh K. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl. Microbiol. Biotechnol. 2009, 85(2), P. 207–228.

      19.  Ren H. S., Wang Y., Zhao H. B., Cai B. L. Isolation and identification of phenol­degrading strains and the application in biotreatment of phenol­containing waste­water. Huan Jing Ke Xue. 2008, 29(2), P.482–487.

      20.  Wang Y., Tian Y., Han B., Zhao H. B., Bi J. N., Cai B. L. Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J. Environ. Sci. 2007, 19(2), 222–225.

      21.  Rocha L. L., de Aguiar Cordeiro A. R., Cavalcante R. M., do Nascimento R. F., Martins S. C.,  Santaella S. T., Melo V. M. Isolation and characterization of phenol degrading yeasts from an oil refinery wastewater in Brazil. Mycopathologia. 2007, 164(4), 183–188.

      22.  Li X., Li A., Liu C., Yang J., Ma F., Hou N.,  Xu Y., Ren N. Characterization of the extracellular biodemulsifier of Bacillus mojavensis XH1 and the enhancement of demulsifying efficiency by optimization of the production medium composition. Proc. Biochem. 2012, 47(4), 626–634.

      23.  Dumont M. J., Narine S. S. Soapstock and deodorizer distillates from North American vegetable oils: Review on their characterization, extraction and utilization. Food Res. International. 2007, 40(8), 957–974.

      24.  Oliveira F. J. S., Vazquez L., de Campos N. P., de Fran?a F. P. Production of rhamnolipids by a Pseudomonas alcaligenes strain. Proc. Biochem. 2009, 44(4), 383–389.

      25.  Mercade M. E., Manresa M. A., Robert M., Espuny M. J., de Andres C., Guinea J. Olive oil mill effluent (OOME). New substrate for biosurfactant production. Bioresour. Technol. 1993, 43(1), 1–6.

      26.  Kitamoto D., Yanagishita H., Shinbo T., Nakane T., Kamisawa C., Nakahara T. Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J. Biotechnol. 1993, 29(1), 91–96.

      27.  Casas J., Garcia­Ochoa F. Sophorolipid production by Candida bombicola medium composition and culture methods. J. Biosci. Bioeng. 1999, 88(5), 488–494.

      28.  Rau U., Hammen S., Heckmann R., Wray V.,  Lang S. Sophorolipids: a source for novel compounds. Ind. Crops Prod. 2001, 13(2), 85–92.

      29.  Vollbrecht E., Rau U., Lang S. Microbial conversion of vegetable oils into surfaceactive di­, tri­, and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurella spec. Lipid/Fett. 1999, 101(10), 389–394.

      30.  Trummler K., Effenberger F., Syldatk C.  An integrated microbial/enzymatic process for production of rhamnolipids and  L­(+)­rhamnose from rapeseed oil with Pseudomonas sp. DSM 2874. Eur. J. Lipid Sci. Technol. 2003, 105(10), 563–571.

      31.  Thaniyavarn J., Chongchin A., Wanitsuksombut N., Thaniyavarn S., Pinphanichakarn P., Leepipatpiboon N., Morikawa M., Kanaya S. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. J. Gen. Appl. Microbiol. 2006, 52(4), 215–222.

      32.  Pornsunthorntawee O., Arttaweeporn N., Paisanjit S., Somboonthanate P., Abe M., Rujiravanit R., Chavadej S. Isolation and comparison of biosurfactants produced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial surfactant­enhanced oil recovery. Biochem. Eng. J. 2008, 42(2), 172–179.

      33.  Abouseoud M., Maachi R., Amrane A., Boudergua S., Nabi A. Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination. 2008, 223(1–3), 143–151.

      34.  Monteiro A. S., Coutinho J. O., J?nior A. C.,  Rosa C. A., Siqueira E. P., Santos V. L. Characterization of new biosurfactant produced by Trichosporon montevideense CLOA 72 isolated from dairy industry effluents. J. Basic. Microbiol. 2009, 49(6), 553–563.

      35.  Daverey A., Pakshirajan K. Production, characterization, and properties of sophorolipids from the yeast Candida bombicola using a low­cost fermentative medium. Appl. Biochem. Biotechnol. 2009, 158(3), 663–674.

      36.  Daverey A., Pakshirajan K. Kinetics of growth and enhanced sophorolipids production by Candida bombicola using a low­cost fermentative medium. Appl. Biochem. Biotechnol. 2010, 160(7), 2090–2101.

      37.  M?ller M., H?rmann B., Syldatk C., Haus­mann R. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl. Biochem. Biotech­nol. 2010, 87(1), 167–174.

      38.  Abalos A., Pinazo A., Infante M. R., Casals M., Garc?a F., Manresa A. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 2001, 17(5), 1367–1371.

      39.  Benincasa M., Contiero J., Manresa M. A., Moraes I. O. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J. Food Eng. 2002, 54(4), 283–288.

      40.  Nitschke M., Costa S. G., Haddad R., Goncalves L. A., Eberlin M. N., Contiero J. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol. Prog. 2005, 21(5), 1562–1566.

      41.  Nitschke M., Costa S. G., Contiero J. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Appl. Biochem. Biotechnol. 2010, 160(7), 2066–2074.

      42.  Deak N., Johnson L. Functional properties of protein ingredients prepared from high­sucrose/low­stachyose soybeans. J. Am. Oil Chem. Soc. (JAOCS). 2006, 83(9), 811–818.

      43.  Solaiman D. K., Ashby R. D., Nu?ez A., Fog­lia T. A. Production of sophorolipids by Candida bombicola grown on soy molasses as substrate. Biotechnol. Lett. 2004, 26(15),1241–1245.

      44.  Solaiman D., Ashby R., Zerkowski J., Foglia T. Simplified soy molasses­based medium for reduced­cost production of sophorolipids by Candida bombicola. Biotechnol. Lett. 2007, 29(9), 1341–1347.

      45.  Thavasi R., Jayalakshmi S., Balasubramanian T., Banat I. Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J. Microbiol. Biotechnol. 2008, 24(7), 917–925.

      46.  Thavasi R., Jayalakshmi S., Banat I. M. Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour. Technol. 2011, 102(3), 3366–3372.

      47.  Jadhav M., Kagalkar A., Jadhav S., Govin­d­ war S. Isolation, characterization, and antifungal application of a biosurfactant produced by Enterobacter sp. MS16. Eur. J. Li­pid Sci. Technol. 2011, 113(11), 1347–1356.

      48.  Shah V., Jurjevic M., Badia D. Utilization of restaurant waste oil as a precursor for sophorolipid production. Biotechnol. Prog. 2007, 23(2), 512–515

      49.  Liu J., Peng K., Huang X., Lu L., Cheng H.,  Yang D., Zhou Q., Deng H. Application of waste frying oils in the biosynthesis of biodemulsifier by a demulsifying strain Alcaligenes sp. S­XJ­1. J. Environ. Sci. (China). 2011, 23(6), 1020–1026.

      50.  Xia W. J., Luo Z. B., Dong H. P., Yu L., Cui Q. F.,  Bi Y. Q. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous Pseudomonas aeruginosa WJ­1 using waste vegetable oils. Appl. Biochem. Biotechnol. 2012, 166(5), 1148–1166.

      51.  Zhang Q., Saleh A. S., Chen J., Shen Q. Che­mi­cal alterations taken place during deep­fat frying based on certain reaction products: A review. Chem. Phys. Lipids. 2012, 165(6), 662–681.

      52.  Haba E., Espuny M. J., Busquets M., Manresa A. Screening and production of rhamnolipids Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J. Appl. Microbiol. 2000, 88(3), 379–387.

      53.  Raza Z. A., Khan M. S., Khalid M. Z., Rehman A. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Biotechnol. Lett. 2006, 28(20), 1623–1631.

      54.  Zhu Y., Gan J., Zhang G., Yao B., Zhu W.,  Meng Q. Reuse of waste frying oil for production of rhamnolipids using Pseudomonas aeruginosa zju. u1M. J. Zhejiang Univ. Sci. A. 2007, 8(9), 1514–1520.

      55.  Sadouk Z., Hacene H., Tazerouti A. Biosurfactants production from low cost substrate and degradation of diesel oil by a Rhodococcus strain. Oil Gas Sci. Technol. 2008, 63(6), 747–753.

      56.  De Lima C., Ribeiro E., S?rvulo E., Resende M.,  Cardoso V. Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil. Appl. Biochem. Biotechnol. 2009, 152(1), 156–168.

      57.  Liu J., Huang X. F., Lu L. J., Xu J. C., Wen Y.,  Yang D. H., Zhou Q. Comparison between waste frying oil and paraffin as carbon source in the production of biodemulsifier by Dietzia sp. S­JS­1. Bioresour. Technol. 2009, 100(24), 6481–6487.

      58.  Wadekar S. D., Kale S. B., Lali A. M., Bhowmick D. N., Pratap A. P. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source. Prep. Biochem. Biotechnol. 2012, 42(4), 249–266.

      59.  Pirog T. P., Shevchuk T. A., Voloshina I. N., Grechirchak N. N. Use of claydite­immobilized oil­oxidizing microbial cells for purification of water from oil. Appl. Biochem. Microbiol. 2005, 41(1), 51–55.

      60.  Pirog T. P., Antonyuk S. I., Karpenko Ye. V., Shevchuk T. A. The influence of conditions of Acinetobacter calcoaceticus K­4 strain cultivation on surface­active substances synthesis. Appl. Biochem. Microbiol. 2009, 45(3), 272 — 278.

      61.  Pirog T. P., Gricenko N. A., Homiak D. I., Konon A. D., Antoniuk S. I. Optimization of synthesis of biosurfactants of Nocardia vaccinii K­8 under bioconversion of biodiesel production waste. Mikrobiol. zh. 2011, 73(4), 15–23. (In Russian).

      62.  Pirog T. P., Ignatenko S. V. Scaling of the process of biosynthesis of surfactants by Rhodococcus erythropolis EK­1 on hexadecane. Appl. Biochem. Microbiol. 2011, 47(4), 393–399.

      63.  Pidgorskii V. S., Iutinska G. O., Pirog T. P. Intensification of technologies microbial synthesis. Kyiv: Nauk. dumka. 2010, 327 p. (In Ukrainian).

      64.  Zulfiqar A. R., Muhammad S. K., Zafar M. K.,  Asma R. Production kinetics tensioactive cha­racteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Biotechnol. Lett. 2006, 28(20), 1623–1631.

      65.  Cha M., Lee N., Kim M., Kim M., Lee S. Hete­rologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudo­monas putida. Bioresour. Technol. 2008, 99(7), 2192–2199.

      66.  Abbasi H., Hamedi M. M., Lotfabad T. B.,  Zahiri H. S., Sharafi H., Masoomi F., Moosavi­Movahedi A. A., Ortiz A., Amanlou M., Noghabi K. A. Biosurfactant­producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical structural characteristics of isolated biosurfactant. J. Biosci. Bioeng. 2012, 113(2), 211–219.

      67.  Sanket J., Chirag B., Sujata J., Sanjay Y., Anuradha N., Desai Anjana J. Biosurfactant production using molasses whey under thermophilic conditions. Bioresour. Technol. 2008, 99(1), 195–199.

      68.  Daniel H. J., Otto R. T., Reuss M., Syldatk C. Sophorolipid production with high yields on whey concentrate rapeseed oil without consumption of lactose. Biotechnol. Lett. 1998, 20(8), 805–807.

      69.  Daniel H. J., Reuss M., Syldatk C. Production of sophorolipids in high concentration from deproteinized whey rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotechnol. Lett. 1998, 20(12), 1153–1156.

      70.  Daverey A., Pakshirajan K. Sophorolipids from Candida bombicola using mixed hydrophilic substrates: Production, purification and characterization. Colloids Surf. B. Biointerfaces. 2010, 79(1), 246–253.

      71.  Dubey K., Juwarkar A. Distillery and curd whey wastes as viable alternative sources for biosurfactant production. J. Microbiol. Biotechnol. 2001, 17(1), 61–69.

      72.  Rodrigues L. R., Teixeira J. A., Oliveira R. Low­cost fermentative medium for bio­sur­factant production by probiotic bacteria. Biochemical. Eng. J. 2006, 32(3), 135–142.

      73.  Dubey K. V., Charde P. N., Meshram S. U., Shendre L. P., Dubey V. S., Juwarkar A. A. Surface­active potential of biosurfactants produced in curd whey by Pseudomonas aeruginosa strain­PP2 and Kocuria turfanesis strain­J at extreme environmental conditions. Bioresour. Technol. 2012, V. 126, P. 368–374.
      doi: 10.1016/j.biortech.2012.05.024.

      74.  Maneerat S. Biosurfactants from marine microorganisms. Songklanakarin J. Sci. Technol. 2005, 27(6), 1263–1272.

      75.  Maneerat S. Production of biosurfactants using substrates from renewable resources. Songklanakarin J. Sci. Technol. 2005, 27(3), 675–683.

      76.  Ghurye G. L., Vipulanandan C., Willson R. C. A practical approach to biosurfactant production using nonaseptic fermentation of mixed cultures. Biotechnol. Bioeng. 1994, 44(5), 661–666.

      77.  Makkar R. S., Cameotra S. S. Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J. Am. Oil Chem. Soc. (JACOS). 1997, 74(7), 887–889.

      78.  Patel R., Desai A. Surface­active properties of rhamnolipids from Pseudomonas aeruginosa GS3. J. Basic Microbiol. 1997, 37(4), 281–286.

      79.  Rashedi H., Assadi M. M., Bonakdarpour B., Jamshidi E. Environmental importance of rhamnolipid production from molasses as a carbon source. Int. J. Environ. Sci. Technol. 2005, 2(1), 59–62.

      80.  Raza Z. A., Khan M. S., Khalid Z. M. Physico­chemical and surface­active properties of biosurfactant produced using molasses by a Pseudomonas aeruginosa mutant. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2007, 42(1), 73–80.

      81.  Muthusamy K., Gopalakrishnan S., Ravi T. K.,  Sivachidambaram P. Biosurfactants: properties, commercial production and application. Curr. Sci. 2008, 94(6), 736–747.

      82.  Abdel­Mawgoud A. M., Aboulwafa M. M., Hassouna N. A. Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl. Biochem. Biotechnol. 2008, 150(3), 289–303.

      83.  Abdel­Mawgoud A. M., Aboulwafa M. M., Hassouna N. A. Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl. Biochem. Biotechnol. 2008, 150(3), 305–325.

      84.  Onbasli D., Aslim B. Biosurfactant production in sugar beet molasses by some Pseudomonas spp. J. Environ. Biol. 2009, 30(1), 161–163.

      85.  Al­Bahry S. N., Al­Wahaibi Y. M., Elshafie A. E.,  Al­Bemani A. S., Joshi S. J., Al­Makhmari H. S.,  Al­Sulaimani H. S. Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int. Biodeterior. Biodegrad. 2013, V. 81, P. 141–146.

      86.  Saimmai A., Rukadee O., Onlamool T., Sobhon V., Maneerat S. Characterization and phylogenetic analysis of microbial surface active compound­producing bacteria. Appl. Biochem. Biotechnol. 2012, 168(5), 1003–1018.

      87.  Lin C.­W., Wu C.­H., Tran D.­T., Shih M.­C.,  Li W.­H., Wu C.­F. Mixed culture fermen­ta­tion from lignocellulosic materials using thermophilic lignocellulose­degrading anaerobes. Proc. Biochem. 2011, 46(2), 489–493.

      88.  Chandel A. K., Singh O. V. Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of “Biofuel”. Appl. Microbiol. Biotechnol. 2011, 89(5), 1289–1303.

      89.  Abdel­Rahman M. A., Tashiro Y., Sonomoto K. Lactic acid production from lignocellulose­derived sugars using lactic acid bacteria: overview and limits. J. Biotechnol. 2011, 156(4), 286–301.

      90.  Taherzadeh M. J., Karimi K. Acid­based hydrolysis processes for ethanol from lignocellulosic materials: A review. BioRes. 2007, 2(3), 472–499.

      91.  Moldes A. B., Alonso J. L., Parajo J. C. Stra­tegies to improve the bioconversion of processed wood into lactic acid by simultaneous saccharification and fermentation. J. Chem. Technol. Biotechnol. 2001, 76(3), 279–284.

      92.  Bustos G., Moldes A. B., Cruz J. M., Dom?n­guez J. M. Production of lactic acid from vine­trimming wastes and viticulture lees using a simultaneous saccharification fermentation method. J. Sci. Food Agricul. 2005, 85(3), 466–472.

      93.  Sreenath H. K., Moldes A. B., Koegel R. G., Stra­ub R. J. Lactic acid production from agriculture residues. Biotechnol. Lett. 2001, 23(1), 179–184.

      94.  Rodrigues L. R., Teixeira J. A., van der Mei H. C., Oliveira R. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf. B Biointerfaces. 2006, 49(1), 79–86.

      95.  Portilla­Rivera O. M., Moldes A. B., Torrado A. M., Dom?nguez J. M. Biosurfactants from grape marc: Stability study. J. Biotechnol. 2007,  131(2) (Suppl). doi:10.1016/j.jbiotec.2007.07.837.

      96.  Portilla­Rivera O. M., Moldes A. B., Torrado A. M., Dom?nguez J. M. Lactic acid and biosurfactants production from hydrolyzed distilled grape marc. Proc. Biochem. 2007, 42(6), 1010–1020.

      97.  Portilla­Rivera O., Torrado A., Dominguez J. M., Moldes A. B. Stability and emulsifying capacity of biosurfactants obtained from lignocellulosic sources using Lactobacillus pentosus. J. Agric. Food Chem. 2008, 56(17), 8074–8080.

      98.  Portilla­Rivera O. M., Rivas B., Torrado A., Moldes A. B., Dom?nguez J. M. Revalorisation of vine trimming wastes using Lactobacillus acidophilus and Debaryomyces hansenii. J. Sci. Food Agric. 2008, 88(13), 2298–2308.

      99.  Slivinski C. T., Mallmann E., de Ara?jo J. M.,  Mitchell D. A. Krieger N. Production of surfactin by Bacillus pumilus UFPEDA 448 in solid­state fermentation using a medium based on okara with sugarcane bagasse as a bulking agent. Proc. Biochem. 2012, 47(12), 1848–1856.

      100.  Fox S. L., Bala G. A. Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates. Bioresour. Technol. 2000, 75(3), 235–240.

      101.  Thompson D. N., Fox S. L., Bala G. A. Biosurfactants from potato process effluents. Appl. Biochem. Biotechnol. 2000, 84–86(1–9), 917–930.

      102.  Nitschke M., Pastore G. Cassava flour waste­water as a substrate for biosurfactant production. Appl. Biochem. Biotechnol. 2003, 106(1–3), 295–302.

      103.  Nitschke M., Pastore G. M. Biosurfactant production by Bacillus subtilis using cassava­processing effluent. Appl. Biochem. Biotechnol. 2004, 112(3), 163–172.

      104.  Nitschke M., Pastore G. M. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour. Technol. 2006, 97(2), 336–341.

      105.  Barros F., Ponezi A., Pastore G. Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J. Microbiol. Biotechnol. 2008, 35(9), 1071–1078.

      106.  Das K., Mukherjee A. K. Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial applications of biosurfactants. Proc. Biochem. 2007, 42(8), 1191–1199.

      107.  Rivaldi J. D., Sarrouh B. F., Branco R. F.,  de Mancilha I. M., da Silva S. S. Biotechnological utilization of biodiesel­derived glycerol for the production of ribo­nuc­leotides and microbial biomass. Appl. Biochem. Biotechnol. 2012, 167(7), 2054–2067.

      108.  Papanikolaou S., Fakas S., Fick M., Chevalot I., Galiotou­Panayotou M., Komai­tis M., Marc I., Aggelis G. Biotechnological valorisation of raw glycerol discharged after biodiesel (fatty acid methyl esters) manufacturing process: Production of 1,3­propanediol, citric acid and single cell oil. Biomass Bioenergy. 2008, 32(1), 60–71.

      109.  Makri A., Fakas S., Aggelis G. Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour. Technol. 2010, 101(7), 2351–2358.

      110.  Asad­ur­Rehman, Saman W. R. G., Nomura N.,  Sato S., Matsumura M. Pre­treatment and utilization of raw glycerol from sunflower oil biodiesel for growth and 1,3­propanediol production by Clostridium butyricum. J. Chem. Technol. Biotechnol. 2008, 83(7), 1072–1080.

      111.  Moon C., Ahn J., Kim S. W., Sang B., Um Y.  Effect of biodiesel­derived raw glycerol on 1,3­propanediol production by different microorganisms. Appl. Biochem. Biotechnol. 2010, 161(1–8), 502–510.

      112.  Zhang A., Yang S. T. Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropio­nici. Proc. Biochem. 2009, 44(12), 1346–1351.

      113.  Yu K. O., Kim S. W., Han S. O. Reduction of glycerol production to improve ethanol yield in an engineered Saccharomyces cerevisiae using glycerol as a substrate. J. Bacteriol. 2010, 150(2), 209–214.

      114.  Da Silva G. P., Mack M., Contiero J. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 2009, 27(1), 30–39.

      115.  Cavalheiro J. M. B. T., de Almeida M. C. M. D.,  Grandfils C., da Fonseca M. M. R. Poly­(3­hydroxybutyrate) production by Cupria­vidus necator using waste glycerol. Proc. Biochem. 2009, 44(5), 509–515.

      116.  Silva S. N., Farias C. B., Rufino R. D.,  Luna J. M., Sarubbo L. A. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf. B. Biointerfaces. 2010, 79(1), 174–183.

      117.  Morita T., Konishi M., Fukuoka T., Imura T.,  Kitamoto D. Microbial conversion of glycerol into glycolipid biosurfactants, manno­sylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317(T). J. Biosci. Bioeng. 2007, 104(1), 78–81.

      118.  Yazdani S. S., Gonzalez R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 2007, 18(3), 213–219.

      119.  De Sousa J. R., Correia J. A., de Almeida J. G. L.,  Rodrigues S., Pessoa O. D. L., Melo V. M. M.,  Gon?alves L. R. B. Evaluation of a co­product of biodiesel production as carbon source in the production of biosurfactant by P. aeruginosa MSIC02. Proc. Biochem. 2011, 46(9), 1831–1839.

      120.  Zhang G. L., Wu Y. T., Qian X. P., Meng Q. Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids. J. Zhejiang. Univ. Sci. 2005, 6(8), 725–730.

      121.  Monteiro S. A., Sassaki G. L., de Souza L. M.,  Meira J. A., de Ara?jo J. M., Mitchell D. A.,  Ramos L. P., Krieger N. Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem. Phys. Lipids. 2007, 147(1), 1–13.

      122.  Das P., Mukherjee S., Sen R. Substrate dependent production of extracellular biosurfactant by a marine bacterium. Bioresour. Technol. 2009, 100(2), 1015–1019.

      123.  Liu Y., Koh C. M. J., Ji L. Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresour Technol. 2011, 102(4), 3927–3933.

      124.  Posada J. A., Cardona C. A., Gonzalez R. Analysis of the production process of optically pure D­lactic acid from raw glycerol using engineered Escherichia coli strains. Appl. Biochem. Biotechnol. 2012, 166(3), Р. 680–699.

      125.  Louhasakul Y., Cheirsilp B. Industrial waste utilization for low­cost production of raw material oil through microbial fermentation. Appl. Biochem. Biotechnol. 2013, 169(1), 110–122.


Additional menu

Site search

Site navigation

Home Archive 2014 №5 BIOSYNTHESIS OF SURFACTANTS ON INDUSTRIAL WASTE Pirog T. P., Sofilkanich A. P., Konon A. D., Grytsenko N. A.

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
for information: