Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2014 №4 ULTRAFINE FLUORESCENT DIAMONDS IN NANOTECHNOLOGY Kanyuk M. I.
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta
V. 7, No 4, 2014

"Biotechnologia Acta" v. 7, no 4, 2014
doi: 10.15407/biotech7.04.009
Р. 9-24, Bibliography 111, Ukrainian.
Universal Decimal classification: 577.1; 60-022.513.2

ULTRAFINE FLUORESCENT DIAMONDS IN NANOTECHNOLOGY

Kanyuk M. I.

Palladian Biochemistry Institute of the National Academy of Sciences of Ukraine, Kyiv

The purpose of the work is to summarize the literature data concerning ultrafine diamonds, namely their industrial production, as well as considerable photostability and biocompatibility that promote their use in modern visualization techniques. It is shown that due to the unique physical properties, they are promising materials for using in nanotechnology in the near future. Possibility of diverse surface modification, small size and large absorption surface are the basis for their use in different approaches for drug and gene delivery into a cell. The changes in the properties of nanodiamond surface modification methods of their creation, stabilization and applications are described. It can be said that fluorescent surface-modified nanodiamonds are a promising target in various research methods that would be widely used for labeling of living cells, as well as in the processes of genes and drugs delivery into a cell.

Key words: ultrafluorescent diamonds, genes and drugs delivery into a cell.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

  • REFERENCES
    • 1.  Chekman І. S. Nanopharmacology. Кyiv: Zadruga. 2011, 424 p. (In Ukrainian).

      2.  Liang X. J., Chen C., Zhao Y., Jia L., Wang P. C. Biopharmaceutics and Therapeutic Poten­tial of Engineered Nanomaterials. Curr. Drug Metab. 2008, 9 (8), 697–709. doi:10.2174/138920008786049230.

      3.  Wang H., Wang Q., Cheng Y., Li K., Yao Y., Zhang Q., Dong C., Wang P., Schwingenschlögl U., Yang W., Zhang X. X. Doping Monolayer Graphene with Single Atom Substitutions. Nano Lett. 2012, 12 (1), 141–144. doi: 10.1021/nl2031629.

      4. Sagalyanov І. Yu., Prylutskyy Yu. I. Radchenko T. M., Tatarenko V. A. Graphene systems: methods of manufacture and processing, structure and functional properties. Uspikhy fizychnykh metodiv. 2010, 11 (1), 95–138. (In Ukrainian).

      5.  Rotko D. M., Prylutska S. V., Bogutska K. I., Prylutskyy Yu. I. Carbon nanotubes as new materials for neuroengineering. Biotekhnologiia. 2011, 4 (5), 9–24. (In Ukrainian).

      6.  Prylutska S. V., Remeniak О. V., Honcharenko Yu. V., Prylutskyy Yu. I. Carbon nanotubes as a new class of materials for nanobiotechnology. Biotekhnolohiia. 2009, 2 (2), 55–66. (In Ukrainian).

      7.  Golinko V. M., Chekman I. S., Puzyrenko A. M., Gorchakova N. O. Role of capillaries in natural nanoprocesses. Ukrainskyi naukovo­medychnyi molodіzhnyi zhurnal. 2012, N. 4, P. 5–9. (In Ukrainian).

      8.  Prylutska S. V., Rotko D. M., Prylutskiy Yu. I.,  Rybalchenko V. K. Toxicity of carbon nanostructures in vitro and in vivo systems. Sovremennye problemy toksikologii. 2012, 3–4 (58–59), 49–57. (In Ukrainian).

      9.  Prylutska S. V., Remenyak О. V., Burlaka A. P., Prylutskyy Yu. I. Perspective of carbon nanotubes application in cancer therapy. Oncologiia. 2010, 12 (1), 5–9. (In Ukrainian).

      10.  Prylutska S. V., Kіchmarenko Yu. M., Bogutska K. I., Prylutskyy Yu. I. Fullerene C60 and its derivatives as anticancer agents: problems and prospects. Biotekhnolohiia. 2012, 5 (3), 9–17.

      11.  Nazarenko V. І., Demchenko O. P. Nanodiamands for fluorescent cell and sensor nanotechnology. Biotechnol. acta. 2013, 6 (5), 9–18. (In Ukrainian). doi: 10.15407/biotech6.05.143

      12.  Pycke B. F. G., Benn T. M., Herckes P., Westerhoff P., Halden R. U. Strategies for quantifying C60 fullerenes in environmental and biological samples and implications for studies in environmental health and ecotoxicology. Trends Anal. Chem. 2011, 30 (1), 44–57. doi: 10.1016/j.trac.2010.08.005.

      13.  Kumar V., Kumari A., Guleria P., Yadav S. K. Evaluating the Toxicity of Selected Types of Nanochemicals. Rev. Environ Contam Toxicol. Reviews of Environmental Contamination and Toxicology. 2012, V. 215, P. 39–121. doi: 10.1007/978­1­4614­1463­6_2.

      14.  Khalid Mohamed El­Say. Nanodiamond as a drug delivery system: Applications and prospective. J. Appl. Pharmaceut. Sci. 2011, 1 (6), 29–39. http://imsear.hellis.org/handle/123456789/150846.

      15.  Schrand A. M., Huang H., Carlson C., Schlager J. J., Ōsawa E., Hussain S. M., Dai L. Are diamond nanoparticles cytotoxic? J. Phys. Chem. B. 2007, V. 111, P. 2–7. doi: 10.1021/jp066387v.

      16.  Boudou J. P., Curmi P. A., Jelezko F., Wrachtrup J., Aubert P., Sennour M., Balasubramanian G., Reuter R., Thorel A., Gaffet E. High yield fabrication of fluorescent nanodiamonds. Nanotechnology. 2009, 20 (23), 1–11. doi: 10.1088/0957­4484/20/23/235602. http://europepmc.org/articles/PMC3201699;jsessionid=NgafK51KjBKWKPHtk1mp.0

      17.  Härt A., Schmich E., Garrido J. A., Hernando J.,  Catharino S. C. R., Walter S., Feulner P., Kromka A., Steinmüller D., Stutzmann M. Protein­modified nanocrystalline diamond thin films for biosensor applications. Nat. Mater. 2004, V. 3, P. 736–742. doi:10.1038/nmat1204.

      18. Davies G., Collins A. T. Vacancy cbocker T., Lasseter T. L., Russell J. N. Jr., Smith L. M., Hamers R. J. DNA­modified nanocrystalline diamond thin­films as stable, biologically active substrates. Nat. Mater. 2002, V. 1, P. 253–257. doi:10.1038/nmat779.

      33.  Gu H., Su X., Loh K. P. Conductive polymer­modified boron­doped diamond for DNA hybridization analysis. Chem. Phys. Lett. 2004, 388 (4–6), 483–487. doi: 10.1016/j.cplett.2004.03.046.

      34.  Takahashi K., Tanga M., Takai O., Okamura H. DNA preservation using diamond chips. Diam Rel. Mater. 2003, 12 (3–7), 572–576. doi: 10.1016/S0925­9635(03)00070­0.

      35.  Ushizawa K., Sato Y., Mitsumori T., Machinami T., Ueda T., Ando T. Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy. Chem. Phys. Lett. 2002, 351 (12), 105–108. doi: 10.1016/S0009­2614(01)01362­8.

      36.  Mitura S., Mitura A., Niedzielski P., Couvrat P. Nanocrystalline diamond coatings. Elsevier. Chaos, Solitons and Fractals. 1999, 10 (12), 2165–2176. doi: 10.1016/S0960­0779(98)00251­3.

      37. Kossovsky N., Gelman A., Hnatyszyn H. J.,  Rajguru S., Garrell R. L., Torbati S.,  Freitas S. S. F., Chow G. M. Surface modified diamond nanoparticles as antigen delivery vehicles. Bioconjugate Chem. 1995, 6 (5), 507–511. doi: 10.1021/bc00035a001.

      38.  Puzyr A. P., Bondar V. S., Belobrov P. I., Bukaemskii A. A. Preparation of nanodiamond­protein­δ­aluminum oxide complex. Dokl. Biochem. 2000, 373 (1–6), 139–141.

      39.  Purtov K. V., Bondar V. S., Puzyr A. P. Supramolecular structure of nanodia­mond particles and obelin built up on a two­dimensional plate. Dokl. Biochem. Biophys. 2001, 380 (1–6), 339–342. doi: 10.1023/A:1012396327027.

      40. Puzyr A. P., Tarskikh S. V., Makarskaya G. V.,  Chiganova G. A., Larionova I. S., Detkov P. Y.,  Bondar V. S. Damaging effect of detonation diamonds on human white and red blood cells in vitro. Dokl. Biochem. Biophys. 2002, V. 385, P. 201–204. doi: 10.1023/A:1019959322589.

      41.  Bondar V. S., Pozdnyakova I. O., Puzyr A. P. Applications of nanodiamonds for separation and purification of proteins. Phys. Solid State. 2004, 46 (4), 758–760. doi: 10.1134/1.1711468.

      42.  Bondar V. S., Puzyr A. P. Nanodiamonds for biological investigations. Phys. Solid State. 2004, 46 (4), 716–719. doi: 10.1134/1.1711457.

      43. Puzyr A. P., Pozdnyakova I. O., Bondar V. S. Design of a luminescent biochip with nanodiamonds and bacterial luciferase. Phys. Solid State. 2004, 469 (4), 761–763. doi: 10.1134/1.1711469.

      44.  Kuznetsov V. L., Chuvilin A. L., Butenko Yu. V.,  Usoltseva A. N. Carbon phase diagram at the nanoscale. Science and Technology of  Fullerence Materials. Bernier P., Ebbesen T. W., Bethune D. S., Metzger R. M., Chiang L. Y., Mintmire J. W. Eds. Mater. Res. Soc. Proc. Pittsburgh, PA. 1995, V. 359, P. 105.

      45.  Barnard A. S., Russo S. P., Snook I. K. Coexistence of bucky diamond with nanodiamond and fullerene carbon phases. Phys.  Rev. B. 2003, V. 68, P. 073406­1–073406­4.  http://dx.doi.org/10.1103/PhysRevB. 68.073406.

      46.  Park N., Lee K., Han S., Yu J., Ihm J. Energetics of large carbon clusters: crossover from fullerenes to nanotubes. Phys. Rev. B. 2002, V. 65, P. 121405­1–1214051­4. http://dx.doi.org/10.1103/PhysRevB.65.121405.

      47.  Tomanek D., Schluter M. A. Growth regi­mes of carbon clusters. Phys. Rev. Lett. 1991, 67 (17), 2331–2335. http://dx.doi.org/10.1103/PhysRevLett.67.2331.

      48.  Mitura S., Mitura K., Niedzielski P., Louda P.,  Danilenko V. Nanocrystalline diamond, its synthesis, properties and applications. J. Achiev. Mater. Manufact. Engin. 2006, 16 (1–2), 9–16.

      49.  Aleksenskii A. E., Baidakova M. V., Vul A. Y.,  Siklitskii V. I. The structure of diamond nanoclusters. Phys. Solid State. 1999, 41 (4), 668–671. doi: 10.1134/1.1130846.

      50.  Shengfu Ji., Tianlai Jiang, Kang Xu, Shuben Li. FTIR study of the adsorption of water on ultradispersed diamond powder surface. Appl. Surf. Sci. 1998, V. 133, P. 231–238. http://dx.doi.org/10.1016/S0169­4332(98)00209­8.

      51. Iakoubovskii K., Baidakova M. V., Wouters B. H., Stesmans A., Adriaenssens G. J., Vul A. Ya., Grobet P. J. Structure and defects of detonation synthesis ND. Diam. Rel. Mater. 2000, 9 (3–6), 861–865. doi: 10.1016/S0925­9635(99)00354­4.

      52.  Iakoubovskii K., Mitsuishi K., Furuya K. High­resolution electron microscopy of detonation nanodiamond. Nanotechnology. 2008, 19 (15), 1–5. doi:10.1088/0957­4484/19/15/155705.

      53.  Raty J. Y., Galli G., Bostedt C., van Buuren T. W., Terminello L. J. Quantum Confinement and Fullerenelike Surface Reconstructions in Nanodiamonds. Phys. Rev. Lett. 2003, 90 (3), 037401­1–037401­4. http://dx.doi.org/10.1103/ PhysRevLett.90.037401.

      54.  Kulakova I. I. Chemistry surface nano diamonds. Solid State Physics. 2004, 46 (4), 621–628.
      http://dx.doi.org/10.1134/1.1711440

      55.  Liu Y., Gu Z., Margrave J. L., Khabashesku V. N. Functionalization of Nanoscale Diamond Powder: Fluoro­, Alkyl­, Amino­, and Amino Acid­Nanodiamond Derivatives. Chem. Mater. 2004. 16 (20), P. 3924–3930. doi: 10.1021/cm048875q.

      56.  Huang L. C. L., Chang H. C. Adsorption —  and immobilization of cytochrome c on nanodiamonds. Langmuir. 2004, 20 (14), 5879–5884. doi: 10.1021/la0495736.

      57.  Kong X., Huang L. C. L., Liau S. C. V., Han C. C.,  Chang H. C. Polylysine­coated diamond­nanocrystals for MALDI­TOF mass analysis of­DNA oligonucleotides. Anal. Chem. 2005, 77 (13), 4273–4277. doi: 10.1021/ac050213c.

      58.  Chung P. H., Perevedentseva E., Tu J. S., Chang C. C., Cheng C. L. Spectroscopic study of biofunctionalized nanodiamonds. Diam. Rel. Mater. 2006, 15 (4–8), 622–625. http://dx.doi.org/10.1016/j.diamond.2005.11.019.

      59.  Shenderova O. A., Zhirnov V. V., Brenner D. W. Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 2002, 27 (3–4), 227–356. doi: 10.1080/10408430208500497.

      60.  Vereschagin A. L. Detonation Nanodiamonds. Altai State Technical University, Barnaul, Russian. Federation. 2001. (In Russian).

      61.  Danilenko V. V. From history discovery synthesis of nano diamonds. Solid State Physics. 2004, 46 (4), 581–584. http://www.ioffe.rssi.ru/journals/ftt/2004/04/ p581­584.pdf.

      62.  Gogotsi Y., Welz S., Ersoy D. A., McNal­lan M. J. Conversion of silicon carbide to crystalline diamond­structured carbon at ambient pressure. Nature. 2001, V. 411, P. 283–287. doi:10.1038/35077031.

      63.  Daulton T. L., Kirk M. A., Lewis R. S., Rehn L. E. Production of nanodiamonds by high­energy ion irradiation of graphite at room temperature. Nucl. Instrum. Meth. B. 2001, V. 175–177, P. 12–20. http://dx.doi.org/10.1016/S0168­583X(00)00603­0.

      64.  Banhart F., Ajayan P. M. Carbon onion as nanoscopic pressure cell for diamond formation. Nature. 1996, V. 382, P. 433–435.  doi: 10.1038/382433a0.

      65.  Frenklach M., Howard W., Huang D., Yuan J.,  Spear K. E., Koba R. Induced nucleation of diamond powder. Appl. Phys. Lett. 1991, V. 59, P. 546–548. http://dx.doi.org/10.1063/1.105434.

      66.  Danilenko V. V. Synthesizing and sintering of diamond by explosion. Moscow: Energoatomizdat. 2003, 272 p. (In Russian).

      67.  Tielens A., Seab C., Hollenbach D. J., Mckee C. F. Shock processing of interstellar dust diamonds in the sky. Astrophys. J. 1987,  V. 319, P. 109–113. doi: 10.1086/184964.

      68. Benedek G., Milani P., Ralchenko V. G. Nanostructured Carbon for Advanced Applications. Dordrecht: Kluwer Academic. NATO Science Series II: Mathematics, Physics and Chemistry. 2001, V. 24, 368 p.

      69.  Shenderova O. A., Gruen D. M. Ultrananocrystalline Diamond: Synthesis, Properties and Applications. William Andrew. 2006, 620 p.

      70.  Vicelli J. A. Ree F. H. Carbon particle phase transformation kinetics in detonation waves. J. Appl. Phys. 2000, V. 88, P. 683–690. http://dx.doi.org/10.1063/1.373721.

      71.  Vicelli J. A., Bastea S., Glosli J. N. Ree F. H. Phase transformations of nanometer size carbon particles in shocked hydrocarbons and explosives. J. Chem. Phys. 2001, 115 (6),  2730–2736. http://dx.doi.org/10.1063/1.1386418.

      72.  Maillard­Schaller E., Kuettel O. M.,  Diede­rich L., Schlapbac L., Zhirnov V. V., Belobrov P. I. Surface properties of nanodiamond films deposited by electrophoresis on Si(100). Diam. Rel. Mater. 1999, 8 (2–5), 805–808. http://dx.doi.org/10.1016/S0925­9635(98)00381­1.

      73.  Bogatyreva G. P., Voloshin M. M., Malogolovets V. G., Gvyazdovskaya V. L., Ilnitskaya G. D. The effect of heat treatment on the surface condition of nanodiamond. J. Optoelectronics and Advanced Mater. 2000, 2 (5), 469–473.

      74.  Belobrov P. I., Gordeev S. K., Petrakovskaya E. A., Falaleev O. V. Paramagnetic properties of nanodiamond. Doklady Phizyks. 2001, 46 (7), 459–462. doi: 10.1134/1.1390396.

      75.  Hu S., Sun J., Du X., Tian F., Jiang L. The formation of multiple twinning structure and photoluminescence of well­dispersed NDs produced by pulsed­laser irradiation. Diam. Rel. Mater. 2008, 17 (2), 142–146. http://dx.doi.org/10.1016/j.diamond.2007.11.009.

      76.  Krueger A. Nanodiamond. P. 329–389. Carbon Materials and Nanotechnology. Weinheim: WILEY­VCH Verlag GmbH & Co. KGaA. 2010, 475 p. doi: 10.1002/9783527629602.

      77.  Choi W. B., Cuomo J. J., Zhirnov V. V., Myers A. F., Hren J. J. Field emission from silicon and molybdenum tips coated with diamond powder by dielectrophoresis. Appl. Phys. Lett. 1996, 68 (5), 720–722. http://dx.doi.org/10.1063/1.116585.

      78.  Ralchenko V., Karabutov A., Vlasov I., Frolov V.,  Konov V., Gordeev S., Zhukov S., Dementjev A. Diamond­carbon nanocomposites: application for diamond film deposition and field electron emission. Diam. Rel. Mater. 1999, 8 (8–9), 1496–1501. http://dx.doi.org/10.1016/S0925­9635(99)00069­2.

      79.  Alimova A. N., Chubun N. N., Belobrov P. I., Detkov P. Ya., Zhirnov V. V. Electrophoresis of nanodiamond powder for cold cathode fab­ri­ca­tion. J. Vac. Sci. Technol. B. 1999, 17 (2), 715–718. http://dx.doi.org/10.1116/1.590625.

      80.  Jiang N., Eguchi K., Noguchi S., Inaoka T.,  Shintani Y. Structural characteristics and field electron emission properties of nanodiamond/carbon films. J. Cryst. Growth. 2002, 236 (4), 577–582. http://dx.doi.org/10.1016/S0022­0248(01)02219­9.

      81.  Jiang T., Xu K., Ji S. FTIR studies on the spectral changes of the surface functional groups of ultradispersed diamond powder synthesized by explosive detonation after treatment in hydrogen, nitrogen, methane and air at different temperatures. J. Chem. Soc., Faraday Trans. 1996, 92 (18), 3401–3406. doi: 10.1039/ft9969203401.

      82.  Show Y., Witek M. A., Sonthalia P., Swain G. M. Characterization and Electrochemical Responsiveness of Boron­Doped Nanocrystalline Diamond Thin­Film Electrodes. Chem. Mater. 2003, 15 (4), 879–888. doi: 10.1021/cm020927t.

      83.  Wang J., Butler J. E., Hsu D. S. Y., Nguyen C. T. C. CVD polycrystalline diamond high­Q micromechanical resonators. Tech. Digest. 2002 IEEE Int. Micro Electro Mechanical Systems Conf., Las Vegas, Jan. 20–24. 2002, P. 657–660. doi: 10.1109/MEMSYS.2002.984356.

      84.  Sekaric L., Parpia J. M., Craighead H. G., Feygelson T., Houston B. H., Butler J. E. Nanomechanical resonant structures in nanocrystalline Diamond. Appl. Phys. Lett. 2002, 81 (23), 4455–4457. http://dx.doi.org/10.1063/1.1526941.

      85.  Philip J., Hess P., Feygelson T. Butler J. E., Chattopadhyay S., Chen K. H.,  Chen L. C. Elastic, mechanical, and thermal properties of nanocrystalline diamond films. J. Appl. Phys. 2003, 93 (4), 2164–2171. http://dx.doi.org/10.1063/1.1537465.

      86.  Prado C., Flechsig G. U., Gründler P., Foord J. S.,  Marken F., Compton R. G. Electrochemical analysis of nucleic acids at boron­doped diamond electrodes. Analyst. 2002, 127 (3), 329–332. doi: 10.1039/B111548K.

      87.  Halpern J. M., Xie S., Sutton G. P. Higa­shikubo B. T., Chestek C. A., Lu H., Chiel H. J.,  Martin H. B. Diamond electrodes for neurodynamics studies in Aplysia californica. Diam. Rel. Mater. 2006, 15 (2–3), 183–187. http://dx.doi.org/10.1016/j.diamond. 2005.06.039.

      88.  Martinez­Huitle C. A. Diamond microelectrodes and their applications in biological studies. Small. 2007, 3 (9), 1474–1476. doi: 10.1002/smll.200700272.

      89.  Dolmatov V. Y. Detonation­synthesis nanodiamonds: synthesis, structure, properties and applications. Russian Chem. Rev. 2007, 76 (4), 339–360. doi:10.1070/RC2007v076n04ABEH003643.

      90.  Bogatyreva G. P., Marinich M. A., Gvyazdovskaya V. L. Diamond — an adsorbent of a new type. Diam. Rel. Mater. 2000, 9 (12),  2002–2005. http://dx.doi.org/10.1016/S0925­9635(00)00351­4.

      91.  Fu C. C., Lee H. Y., Chen K., Lim T. S., Wu H. Y.,  Lin P. K., Wei P. K., Tsao P. H., Chang H. C., Fann W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. U.S.A. 2007, 104 (3), 727–732. doi: 10.1073/pnas.0605409104.

      92.  Smith B. R., Inglis D. W., Sandnes B., Ra­beau J. R., Zvyagin A. V., Gruber D., Noble C. J.,  Vogel R., Ōsawa E., Plakhotnik T. Five­Nanometer Diamond with Luminescent Nitrogen­Vacancy Defect Centers. Small. 2009, 5 (14), 1649–1653. doi: 10.1002/smll.200801802.

      93.  Smith B. R., Niebert M., Plakhotnik T., Zvyagin A. V. Transfection and imaging of diamond nanocrystals as scattering optical labels. J. Lumin. 2007, 127 (1), 260–263. http://dx.doi.org/10.1016/ j.jlumin.2007.02.044.

      94.  Mohan N., Chen C. S., Hsieh H. H., Wu Y, C., Chang H. C. In Vivo Imaging and Toxicity Assessments of Fluorescent Nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010, 10 (9), 3692–3699. doi: 10.1021/nl1021909.

      95.  Gruber A., Dräbenstedt A., Tietz C., Fleury L., Wrachtrup J., von Borczyskowski C. Scanning confocal optical microscopy and magnetic resonance on single defect centres. Science. 1997, 276 (5321), 2012–2014. doi: 10.1126/science.276.5321.2012.

      96.  Yu S. J., Kang M. W., Chang H. C., Chen K. M.,  Yu Y. C. Bright fluorescent NDs: No photobleaching and low cytotoxicity. J. Am. Chem. Soc. 2005. V. 127, P. 17604–17605. doi: 10.1021/ja0567081.

      97.  Faklaris O., Garrot D., Joshi V., Boudou J. P.,  Sauvage T., Curmi P., Treussart F. Compa­rison of the photoluminescence properties of semiconductor quantum dots and non­blinking diamond nanoparticles. Observation of the diffusion of diamond nanoparticles in cells. J. Europ. Opt. Soc. Rap. Public. 2009, V. 4, P. 09035­1–09035­8. doi: 10.2971/jeos.2009.09035.

      98.  Faklaris O., Garrot D., Joshi V., Druon F., Bou­dou J. P., Sauvage T., Georges P., Cur­mi P. A., Treussart F. Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. Small. 2008, 4 (12), 2236–2239. doi: 10.1002/smll.200800655.

      99.  Rabeau J. R., Reichart P., Tamanyan G., Jamieson D. N., Prawer S., Jelezko F., Gaebel T., Popa I., Domhan M., Wrachtrup J. Implantation of labelled single nitrogen vacancy centers in diamond using 15N. Appl. Phys. Lett. 2006, 88 (2), 023113­1–023113­3. http://dx.doi.org/+10.1063/1.2158700.

      100.  Aharonovich I., Castelletto S., Simpson D. A.,  Su C.­H., Greentree A.D., Prawer S. Diamond­ based single­photon emitters. Rep. Prog. Phys. 2011, 74 (7), 076501–0765028. doi:10.1088/0034­4885/74/7/076501.

      101.  Faklaris O., Joshi V., Irinopoulou T., Tauc P.,  Sennour M., Girard H., Gesset C., Arnault J. C.,  Thorel A., Boudou J. P., Curmi P. A., Treussart F. Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano. 2009, 3 (12), 3955–3962. doi: 10.1021/nn901014j.

      102.  Chang B. M., Lin H. H., Su L. J., Lin W. D., Lin R. J., Tzeng Y. K., Lee R. T., Lee Y. C., Yu A. L., Chang H. C. Highly Fluorescent Nanodiamonds Protein­Functionalized for Cell Labeling and Targeting. Adv. Funct. Mater. 2013, 23 (46), 5737–5745. doi: 10.1002/adfm.201301075.

      103.  Grausova L., Kromka A., Burdikova Z., Eck­hardt A., Rezek B., Vacik J., Haenen K., Lisa V.,  Baca­kova L. Enhanced growth and osteo­genic differentiation of human osteoblast­like cells on boron­doped nanocrystalline diamond thin films. PLoS One. 2011, 6 (6), 1–17. doi: 10.1371/journal.pone.0020943.

      104.  Morita Y., Takimoto T., Yamanaka H., Kumekawa K., Morino S., Aonuma S., Kimura T., Komatsu N. A Facile and Scalable Process for Size­Controllable Separation of Nanodiamond Particles as Small as 4 nm. Small. 2008, 4 (12), 2154–2157. doi: 10.1002/smll.200800944.

      105.  Kalish R., Uzan­Saguy C., Philosoph B., Richter V., Lagrange J. P. Gheeraert E., Deneuville A., Collins A. T. Nitrogen doping of diamond by ion implantation. Diam. Rel. Mater. 1997, 6 (2–4), 516–520. http://dx.doi.org/10.1016/S0925­9635(96)00657­7.

      106.  US 20120022231 A1, C07K17/00; B02C23/18; B32B9/04; C07H21/00; C09K11/65; B82Y20/00. Method for Manufacturing Cubic Diamond Nanocrystals. Curmi Patrick (Evry, FR), Boudou Jean­Paul (Chatenay­Malabry Cedex, FR), Thorel Alain (Evry Cedex, FR), Jelezko Fedor (Stuttgart, DE), Sennour Mohamed (Evry Cedex, FR). Filing Date: 03/08/2010. Publication Date: 01/26/2012. Application Number: 13/255691. http://www.google.com/patents/US20120022231.

      107.  EP1990313 A1, C01B31/06; C30B29/04; C09K11/65. Method to produce light­emitting nano­particles of diamond. Jean­Paul Boudou (92370 Chaville FR), Patrick Curmi (92140 Clarmant FR). Filing Date: 10/05/2007. Publication Date: 12/11/2008. Application Number:07290593.8. Bulletin 2008/46. http://www.google.com/patents/EP1990313A1?cl=en.

      108.  Hu S., Tian F., Bai P., Cao S., Sun J., Yang J. Synthesis and luminescence of nanodiamonds from carbon black. Mater Sci Eng. B. 2009, 157 (1–3), 11–44. http://dx.doi.org/10.1016/j.mseb.2008.12.001.

      109.  Ting C. C., Young T. F., Jwo C. S. Fabrication of diamond nanopowder using microwave plasma torch technique. Int. J. Adv. Manuf. Technol. 2007, 34 (3–4), 316–322. doi: 10.1007/s00170­006­0603­6.

      110.  Stacey A., Aharonovich I., Prawer S., Butler J. E. Controlled synthesis of high quality micro/nano­diamonds by microwave plasma chemical vapor deposition. Diam. Rel. Mater. 2009, 18 (1), 51–55. http://dx.doi.org/10.1016/j.diamond.2008.09.020

      111.  Kennedy T. A., Colton J. S., Butler J. E.,  Linares R. C., Doering P. J. Long coherence times at 300 K for nitrogen­vacancy center spins in diamond grown by chemical vapor deposition. Appl Phys Lett. 2003, 83 (20), 4190–4192. http://dx.doi.org/ 10.1063/1.1626791.


 

Additional menu

Site search

Site navigation

Home Archive 2014 №4 ULTRAFINE FLUORESCENT DIAMONDS IN NANOTECHNOLOGY Kanyuk M. I.

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.