Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2014 №4 ISOLATION AND PURIFICATION OF A KRINGLE 5 FROM HUMAN PLASMINOGEN USING AH-SEPHAROSE Kapustianenko L. G., Iatsenko T. A., Iusova O. I., Grinenko T. V.
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta
V. 7, No 4, 2014

"Biotechnologia Acta" v. 7, no 4, 2014
doi: 10.15407/biotech7.04.035
Р. 35-42, Bibliography 27, English.
Universal decimal classification: 577.112.5: 57.088

ISOLATION AND PURIFICATION OF A KRINGLE 5 FROM HUMAN PLASMINOGEN USING AH-SEPHAROSE

Kapustianenko L. G., Iatsenko T. A., Iusova O. I., Grinenko T. V.

Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Our aim was to develop a method for isolation of human plasminogen kringle 5 possessing functional activity. The proposed method includes the following steps: hydrolysis of plasminogen with elastase, separation of mini-plasminogen from kringle fragments 1–3 and 4 on Lys-Sepharose, mini-plasminogen hydrolysis with pepsin, affinity chromatography on AH-Sepharose and polyacrilamide gel electrophoresis.

We obtained the electrophoretically pure fragment of human plasminogen kringle 5 showing functional activity towards the ligands with high and low molecular mass. Weight yield was 3.8% that corresponds to 25.3% of the theoretically possible.

It was established that affinity chromatography on AH-Sepharose was the sufficient step to isolate kringle 5 from mini-plasminogen hydrolysate with pepsin. This approach does not require additional purification steps while the ability of kringle 5 to bind specifically to AH-Sepharose demonstrates the functional activity of the kringle.

Key words: plasminogen, fragments of plasminogen, kringle 5, angiostatins.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

  • REFERENCES
    • 1.  Cao Y., Xue L. Angiostatin. Semin. Thromb. Haemost. 2004, 30(1), 83–93.

      2.  Wahl M. L., Kenan D. J., Gonzalez­Gronow M., Pizzo S. V. Angiostatin’s molecular mechanism: aspects of specificity and regulation elucidated. J. Cell. Biochem. 2005, 96(2),  242–261.

      3.  Moschetta M., Cesca M., Pretto F., Giavazzi R. Angiogenesis inhibitors: implications for combination with conventional therapies. Curr. Pharm. Des. 2010, 16(35), 3921–3931.

      4.  Cao Y., Chen A., An S. S., Ji R. W., Davidson D., Llinás M. Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J. Biol. Chem. 1997, V. 272, Р. 22924–22928.

      5.  Gonzalez­Gronow M., Kalfa T., Johnson C. E., Gawdi G., Pizzo S. V. The voltage­dependent  anion channel is a receptor for plasminogen kringle 5 on human endothelial cells. J. Biol. Chem. 2003, V. 278, Р. 27312–27318.

      6.  Tarui T., Miles L. A., Takada Y. Specific interaction of angiostatin with integrin αvβ3 in endothelial cells. J. Biol. Chem. 2001, V. 276,  Р. 39562–29567.

      7.  Davidson D. J., Haskell C., Majest S., Kherzai A.,  Egan D. A., Walter K. A., Schneider A., Gub­bins E. F., Solomon L., Chen Z., Lesniewski R., Henkin J. Kringle 5 of Human Plasminogen Induces Apoptosis of Endothelial and Tumor Cells through Surface­Expressed Glucose­Regulated Protein 78. Cancer Res. 2005, 65(11), 4663–4672.

      8.  Perri S. R., Nalbantoglu J., Annabi B., Koty Z., Lejeune L., François M., Di Falco M. R., Béliveau R., Galipeau J. Plasminogen Kringle 5– Engineered Glioma Cells Block Migration of Tumor­Associated Macrophages and Suppress Tumor Vascularization and Progression. Cancer Res. 2005, 65(18), 8359–8365.

      9.  Ma J., Li Ch., Shao Ch., Gao G., Yang X. Decreased K5 receptor expression in the retina, a potential pathogenic mechanism for diabetic retinopathy. Mol. vision. 2012, V. 18, Р. 330–336.

      10. Zhang D., Kaufman P. L., Gao G., Saunders R. A.,  Ma J. X. Intravitreal injection of plasminogen kringle 5, an endogenous angiogenic  inhibitor, arrests retinal neovascularization in rats. Diabetologia. 2001, V. 44,  Р. 757–765.

      11.  Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970, 170 (3962), 1095–1096.

      12. Sottrup­Jensen L., Claeys H., Zajdel M., Petersen T. E., Magnusson S. The primary structure of human plasminogen: isolation of two lysine­binding fragments and one “Mini”­plasminogen (M.W.38.000) by elastase­catalyzed­specific limited proteolysis. Progress in Chemical Fibri­no­lysis and Thrombolysis. (Davidson J. F.,  Rowan R. M., Samama M. M., Desnoyers P. C. (Eds.). N.­Y.: Raven Press, 1978,  P. 191–209.

      13. March S., Parikh J., Cuatrecasas P. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal. Biochem. 1974, 60(1), 149–152.

      14.  Robbins K. C., Summaria L. Plasminogen and plasmin. Meth. Enzymol. 1976, V. 45, Р. 257–273.

      15.  Demchenko A. P. UV spectrophotometry and the proteins structure. Kyiv: Naukova dumka. 1981. 208 p. (In Russian).

      16.  Schägger H., Von Jagow G. Tricine­sodium dodecyl sulfate­polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987, V. 166, Р. 368–379.

      17.  Sjoholm I., Wiman B., Wallen P. Studies on the conformational changes of plasminogen induced during activation to plasmin  and by 6­aminohexanoic acid. Eur. J. Biochem. 1973, 39(2), 471–479.

      18.  Suenson E., Thorsen S. Secondary­site bin­ding of Glu­plasmin, Lys­plasmin and miniplasmin to fibrin. Biochem. J. 1981, 197(3),  619–628.

      19.  Takada A., Takada Y., Sugawara Y. Activation of Val442­plasminogen (mini­plasminogen) by urokinase, streptokinase and tissue plasminogen activator. Thromb Res. 1988, 9(2), 253–263.

      20.  Novohatnii V. V. Investigations of the plasminogen molecule domain organization. Synop­sis of Ph.D. dissertation, Biology, Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, Kyiv, 1985. (In Russian).

      21.  Thewes T., Ramesh V., Simplaseany E. L., Llinas M. Isolation, purification and 1H­NMR characterization of a kringle 5 domain fragment from human plasminogen. Biochim. Biophys. Acta. 1987, 912(2),  254–269.

      22.  Váradi A., Patthy L. Kringle 5 of human plasminogen carries a benzamidine­binding site. Biochem. Biophys. Res. Communic. 1981, 103(1), 97–102.

      23.  Verevka S. V., Grinenko T. V. Pseudo­functional interactions of plasminogen: molecular mechanisms and pathologic appearance. Adv. Med. Biol. Nova Science. 2011, V. 34,  Р. 35–61.

      24.  Cristensen U. The AH­site of plasminogen and two C­terminal fragments. Biochem. J. 1984, 223(2), 413–421.

      25.  Novokhatny V. V., Matsuka Yu. V.,  Kudinov S. A. Analysis of ligand binding to kringles 4 and 5 frag­ment from human plasminogen. Thromb Res. 1989, 53(3),  243–252.

      26.  Matsuka Yu. V. Localization and structural characterization of lysine­binding sites of plasminogen molecule. Synopsis of Ph.D. dissertation, Biology, Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, Kyiv, 1989. (In Russian).

      27.  Rajagopalan T. G., Moore S., Stein W. H. Pepsin from Pepsinogen. Preparation and Pro­perties. J. Biol. Chem. 1966, 241(21),  4940–4950.


 

Additional menu

Site search

Site navigation

Home Archive 2014 №4 ISOLATION AND PURIFICATION OF A KRINGLE 5 FROM HUMAN PLASMINOGEN USING AH-SEPHAROSE Kapustianenko L. G., Iatsenko T. A., Iusova O. I., Grinenko T. V.

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.