Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2014 № 2 MICROALGAE AS TOCOPHEROL PRODUCERS V. M. Mokrosnop, E. K. Zolotareva
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta
V. 7, No 2, 2014

"Biotechnologia Acta" v. 7, no 2, 2014
doi: 10.15407/biotech7.02.026
Р. 26-33, Bibliography 40, Russian.
Universal Decimal classification: 577.161.3: 582.263: 582.251.72

MICROALGAE AS TOCOPHEROL PRODUCERS

V. M. Mokrosnop, E. K. Zolotareva

Institute of Botany of National Academy of Sciences of Ukraine, Kyiv, Ukraine

Microalgae are able to accumulate considerable amounts of tocopherols (up to 4 mg/g dry weight). The content of α-tocopherol to plant oils is low, whereas microalgae contain up to 97% of the tocochromanols that provides high bioactivity. The data about the content of tocopherols in eukaryotic microalgae Dunaliella tertiolecta, Nannochloropsis oculata, Isochrysis galbana, Euglena gracilis, Tetraselmis suecica, Diacronema vlkianum, as well as in the cyanobacterium Spirulina platensis are given in the paper. The largest amounts of tocopherols are synthesized by Euglena gracilis cells at mixotrophic cultivation. The level of tocopherols in microalgae depends on cultivation conditions. Two-stage biotech cultivation techniques, limiting nutrition in some biogenic elements, the introduction of exogenous carbon sources are used to increase the yield of tocopherol from microalgae. The approaches to the genetic transformation of plants leading to higher content of active vitamin E are rewieved as well.

Key words: microalgae, α-tocopherol, two-step cultivation.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

  • References
    • 1.  Abbasi A. Functional analysis of tocopherol biosynthesis in plants. Aus Tehran: IRI. 2007, 171 p.

      2.  Preedy V., Watson R. The encyclopedia of vitamin E. London: CABI Publishing. 2007, 945 p.

      3.  Mьller L., Theile K., Böhm V. In vitro antioxidant activity of tocopherols and tocotrienols and comparison of vitamin E concentration and lipophilic antioxidant capacity in human plasma. Mol. Nutr. Food Res. 2010, 54(5), 731–742.
      http://dx.doi.org/10.1002/mnfr.200900399

      4.  Niki E., Noguch N. Dynamics of antioxidant action of vitamin E. Acc. Chem. Rec. 2004, V. 37, P. 45–51.
      http://dx.doi.org/10.1021/ar030069m

      5.  Survase S., Bajaj I., Singal R. Biotechnological production of vitamins. Food Technol. Biotech. 2006, 44(3), 381–396.

      6.  Natural source vitamin E. A global market overview. New York. 2013, 345 p.

      7.  Weiser H., Riss G., Kormann A. Biodiscrimination of the eight α-tocopherol stereoisomers results in preferential accumulation of the four 2R forms in tissues and plasma of rats. J. Nutr. 1996, 126(10), 2539–2549.

      8.  Jensen S., Lauridsen C. α-Tocopherol stereoisomers. Vitam. Horm. 2007, V. 76, P. 281–308.
      http://dx.doi.org/10.1016/S0083-6729(07)76010-7

      9.  Henry V., Qungang Q. Biotechnological production and application of vitamin E: current state and prospects. Appl. Microbiol. Biotech. 2005, V. 68, P. 436–444.
      http://dx.doi.org/10.1007/s00253-005-0017-7

      10.  World Health Organization. Human Vitamin and mineral requirements: report of a joint FAO/WHO expert consultation. Rome: VTC. 2001, 341 p.

      11.  Schwartz H., Ollilainen V., Piironen V., Lam­pi A. Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats. J. Food Comp. Anal. 2008, 21(2), 152–161.
      http://dx.doi.org/10.1016/j.jfca.2007.07.012

      12.  Herting D., Drury E. Vitamin E content of vegetable oils and fats. J. Nutr. 1965, N 81, P. 335–341.

      13.  http://www.medicinalfoodnews.com/vol01/issue6/vegyoils

      14.  Warner K., Mounts T. Analysis of tocopherols and phytosterols in vegetable oils by HPLC with evaporative light-scattering detection. JAOCS. 1990, 67(11), 827–831.
      http://dx.doi.org/10.1007/BF02540500

      15.  http://www.cyberlipid.org/vite/vite0001.htm

      16.  Rocheford T., Wong J., Egesel C., Lambert R. Enhancement of vitamin E levels in corn. J. Amer. Coll. Nutr. 2002, 21(3), 191–198.

      17.  Rippert P., Scimemi C., Dubald M., Matringe M. Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol. 2004, V. 134, P. 92–100.
      http://dx.doi.org/10.1104/pp.103.032441

      18.  Shintani D., DellaPenna D. Elevating the vitamin E content of plants through metabolic engineering. Science. 1998, V. 282, P. 2098–2100.
      http://dx.doi.org/10.1126/science.282.5396.2098

      19.  Van Eenennaam A. I., Lincoln K., Durrett T. P., Valentin H. E., Shewmaker C. K., Thorne G. M., Svang J., Baszis S. R., Levering C. K., Aasen E. D., Hao M., Stein J. C., Norris S. R., Last R. L. Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell. 2003, V. 15, P. 3007–3019.
      http://dx.doi.org/10.1105/tpc.015875

      20.  Ogbonna J. Microbiological production of tocopherols: current state and prospects. Appl. Microbiol. Biotech. 2009, V. 84, P. 217–225.
      http://dx.doi.org/10.1007/s00253-009-2104-7

      21.  Tomaselli L. Handbook of microalgal culture: Biotechnology and Applied phycology. Oxford: Blackwell. 2004, 566 p.

      22.  Zolotariova O. K., Shniukova E. I., Sivash O. O., Mikhailenko N. F, Kotinskiy A. V. Prospects of mickoalgae using in bіotehnology. Kyiv: Alterpres. 2008, 234 p. (In Ukrainian).

      23.  Raja R., Hemaiswarya S., Kumar N. A., Sridhar S., Rengasamy R. A perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol. 2008, N 34. P. 77–88.
      http://dx.doi.org/10.1080/10408410802086783

      24.  Spolaore P., Joannis-Cassan C., Duran E., Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101(2), 87–96.
      http://dx.doi.org/10.1263/jbb.101.87

      25.  Brown M., Mular M., Miller I., Farmer C., Trnnery C. The vitamin content of microalgae used in aquaculture. J. Appl. Phycol. 1999, N. 11, P. 247–255.
      http://dx.doi.org/10.1023/A:1008075903578

      26.  Rodriguez-Zavala J., Ortiz-Cruz M., Mendoza-Hernandez G., Moreno-Sanchez R. Increased synthesis of α-tocopherol by Euglena gracilis under conditions of high biomass production. J. Appl. Microbiol. 2010, V. 109, P. 2160–2172.
      http://dx.doi.org/10.1111/j.1365-2672.2010.04848.x

      27.  Carballo-Cardenas E., Tuan P., Janssen M.,  Wijffels R. Vitamin E (-tocopherol) produc­tion by the marine microalgae Dunaliella tertiolecta and Tetraselmis suecica in batch cultivation. Biomol. Eng. 2003, V. 20, P. 139–147.
      http://dx.doi.org/10.1016/S1389-0344(03)00040-6

      28.  Durmaz Y. Vitamin E (α-tocopherol) production by te marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture. 2007, V. 272, P. 717–722.
      http://dx.doi.org/10.1016/j.aquaculture.2007.07.213

      29.  Abd El-Baky H., Farouk K., El Baz G. S., El-Baroty G. S. Production of antioxidant by the green alga Dunaliella salina. Int. J. Agricult. Biol. 2004, 6(1), 49–57.

      30.  Takeyama H., Kanamaru A., Yoshino Y.,  Kakuta H., Kawamura Y., Matsunaga T. Production of antioxidant vitamins, β-carotene, vitamin C, and vitamin E, by two-step culture of Euglena gracilis Z. Biotech. Bioeng. 1997, V. 53, P. 185–190.
      http://dx.doi.org/10.1002/(SICI)1097-0290(19970120)53:2<185::AID-BIT8>3.0.CO;2-K

      31.  Yasar D., Sevket G. β-Tocopherol and fatty acids of Spirulina platensis biomass in glass panel bioreactor. Pak. J. Biol. Sci. 2006, 9(15), 2901–2904.
      http://dx.doi.org/10.3923/pjbs.2006.2901.2904

      32.  Fabregas J., Herrero C. Vitamin content of four marine microalgae. Potential use as source of vitamins in nutrition. J. Indust. Microbiol. 1990, V. 5, P. 259–264.
      http://dx.doi.org/10.1007/BF01569683

      33.  Tani Y., Osuka S. α-Tocopherol production by an analog-resistant strain of Euglena gracilis Z. Agric. Biol. Chem. 1989, V. 53, P. 2313–2318.
      http://dx.doi.org/10.1271/bbb1961.53.2313

      34.  Ogbonna J., Ichige E., Tanaka H. Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis. Appl. Microbiol. Biotech. 2002, V. 58, P. 532–538.
      http://dx.doi.org/10.1007/s00253-001-0901-8

      35.  Ogbonna J. C., Tomiyama S., Tanaka H. Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J. Appl. Phycol. 1998, V. 10, P. 67–74.
      http://dx.doi.org/10.1023/A:1008011201437

      36.  Afiukwa C., Ogbonna J. Effects of mixed substrates on growth and vitamin production by Euglena gracilis. Afr. J. Biotech. 2007, 6(22), 2612–2615.

      37.  Tani Y., Tsumura H. Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis Z. Agric. Biol. Chem. 1989, 53(2), 305–312.
      http://dx.doi.org/10.1271/bbb1961.53.305

      38.  Fujita T., Aoyagi H., Ogbonna J., Tanaka H. Effect of mixed organic substrate on α-tocopherol production by Euglena gracilis in photoheterotrophic culture. Appl. Micro­biol. Biotechnol. 2008, 79(3), 371–378.
      http://dx.doi.org/10.1007/s00253-008-1443-0

      39.  Vismara R., Vestri S., Kusmic C. Barsanti L., Gualtieri P. Natural vitamin E enrichment of Artemia salina fed freshwater and marine microalgae. J. Appl. Phycol. 2003, V. 15, P. 75–80.
      http://dx.doi.org/10.1023/A:1022942705496

      40.  Matsumoto T., Inui H., Miyatake K., Nakano Y., Murakami K. Comparison of nutrients in Euglena with those in other representative food sources. Eco-Engineering. 2009, 21(2), 81–86.