Biotechnologia Acta


  • Increase font size
  • Default font size
  • Decrease font size
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta
V. 6, No 4, 2013

"Biotechnologia Acta" v. 6, no. 4, 2013
doi: 10.15407/biotech6.04.105
Р. 105-117, Bibliography 60, English
Universal Decimal classification: 575.113+577.214+612.321


S. Souchelnytskyi

Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden

Cancer is a disease, which explicitly illustrates success, failures and challenges of the modern biomedical research. Technology development has been the driving force of improvements in the cancer treatment. Introduction into clinical practice of genomics, RNA profiling and proteomics technologies have provided a basis for development of novel diagnostic, drugs and treatments. In this chapter, contributions of OMICs technologies to personalization of cancer diagnostic and treatment are discussed. The focus is on technologies that showed capacity to deliver diagnostic that may be used in the clinic as routine tests. Three clinical cases are presented to illustrate already available individualized cancer diagnostic.

Key words: personalized cancer medicine, genomics, transcriptomics, proteomics, metabolomics, diagnostic.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2008

  • References
    • 1. Hanahan D., Weinberg R. A. Hallmarks of cancer: the next generation. Cell.  2011, 144(5), 646–674.

      2. Nature Milestones in Cancer / Ed. A. Farrell, E. Hutchinson, B. Marte, N. McCarthy. Nat. Rev. Cancer.  2006, V. 6, P. S7–S23.

      3. Vogelstein B., Kinzler K. W. Cancer genes and the pathways they control. Nat. Med.  2004, V. 10, P. 789−799.

      4. Waliszewski P. Complexity, dynamic cellular network, and tumorigenesis. Pol. J. Pathol. 1997,   48(4), 235–241.

      5. Casado-Vela J., Cebrián A., Gómez del Pulgar M. T., Lacal J. C. Approaches for the study of cancer: towards the integration of genomics, proteomics and metabolomics. Clin. Transl. Oncol.  2011, 13(9), 617–628.

      6. Garay J. P., Gray J. W. Omics and therapy — a basis for precision medicine. Mol. Oncol.  2012,  6(2), 128–139.

      7. Benjamin D. I., Cravatt B. F., Nomura D. K. Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell. Metab.  2012, 16(5), 565–577.

      8. Grant G. M., Fortney A., Gorreta F. et al. Microarrays in cancer research. Anticancer Res. 2004, 24(2A), 441–448.

      9. Gullapalli R. R., Lyons-Weiler M., Petrosko P. et al. Clinical integration of next-generation sequencing technology. Clin. Lab. Med.  2012, 32(4), 585–599.

      10. Tangrea M. A., Wallis B. S., Gillespie J. W. et al. Novel proteomic approaches for tissue analysis. Expert. Rev. Proteom.  2004, 1(2), 185–192.

      11. Hanash S. Disease proteomics. Nature.  2003, 422(6928), 226–232.

      12. Souchelnytskyi N., Souchelnytskyi S. Three-dimensional Hp/pI/Mr separation of more than 20,000 intact cellular proteins. Nature Methods. 2013, Under revision.

      13. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA.  1977, 74(2), 560–564.

      14. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA.  1977, 74(12), 5463–5467.

      15. Slatko B. E., Kieleczawa J., Ju J. et al. «First generation» automated DNA sequencing technology. Curr. Protoc. Mol. Biol.  2011, Chapter 7:Unit7.2.

      16. Metzker M. L. Sequencing technologies — the next generation. Nat. Rev. Genet.  2010, 11(1), 31–46.

      17. Voelkerding K. V., Dames S., Durtschi J. D. Diagnostic Next Generation Sequencing. J. Mol. Diagn.  2010, 12(5), 539–551.

      18. Meldrum C., Doyle M. A., Tothill R. W. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin. Biochem. Rev.  2011, 32(4), 177–195.

      19. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature.  2012, 490(7418), P. 61–70.

      20. Shinawi M., Cheung S. W. The array CGH and its clinical applications. Drug. Discov. Today.  2008, 13(17–18), 760–770.

      21. Tsuchiya K. D. Fluorescence in situ hybridization. Clin. Lab. Med.  2011, 31(4), 525–542.

      22. Jain K. K. Current status of fluorescent in-situ hybridization. Med. Device Technol.  2004, 15(4), 14–17.

      23. Ren H., Francis W., Boys A. et al. BAC-based PCR fragment microarray: high-resolution detection of chromosomal deletion and duplication breakpoints. Human Mutation.  2005, 25(5),  476–82.

      24. Zecchini V., Mills I. G. Putting chromatin immunoprecipitation into context. J. Cell Biochem. 2009, 107(1), 19–29.

      25. Saxena A., Carninci P. Whole transcriptome analysis: what are we still missing? Wiley Interdiscip. Rev. Syst. Biol. Med. 2011, 3(5), 527–543.

      26. Samuel N., Hudson T. J. Translating genomics to the clinic: implications of cancer heterogeneity. Clin. Chem.  2013, 59(1), 127–137.

      27. Hawkins R. D., Hon G. C., Ren B. Next-generation genomics: an integrative approach. Nat. Rev. Genet, 2010, 11(7), 476–486.

      28. Gullapalli R. R., Lyons-Weiler M., Petrosko P. Clinical integration of next-generation sequencing technology. Clin. Lab. Med.  2012. 32(4), 585–599.

      29. Desmedt C., Voet T., Sotiriou C., Campbell P. J. Next-generation sequencing in breast cancer: first take home messages. Curr. Opin. Oncol.  2012, 24(6), 597–604.

      30. Sandoval J., Esteller M. Cancer epigenomics: beyond genomics. Curr. Opin. Genet. Dev.  2012, 22(1), 50–55.

      31. Huber-Keener K. J., Liu X., Wang Z. et al. Differential gene expression in tamoxifen-resistant breast cancer cells revealed by a new analytical model of RNA-Seq data. PLoS One.  2012, 7(7), e41333.

      32. Humphery-Smith I., Cordwell S. J., Black­stock W. P. Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis. 1997, 18(8), 1217–1242.

      33. Jiang Z., Zhou Y., Devarajan K. et al. Identifying putative breast cancer-associated long intergenic non-coding RNA loci by high density SNP array analysis. Front Genet.  2012, V. 3.  P. 299.

      34. Giovannetti E., van der Velde A., Funel N. et al. High-throughput microRNA (miRNAs) arrays unravel the prognostic role of MiR-211 in pancreatic cancer. PLoS One.  2012, 7(11), e49145.

      35. Yan-Fang T., Dong W., Li P. et al. Analyzing the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays. Cancer Cell Int.  2012, 12(1), 40.

      36. Cheng S., Koch W. H., Wu L. Co-development of a companion diagnostic for targeted cancer therapy. Nat. Biotechnol.  2012, 29(6), 682–688.

      37. Ong F. S., Das K., Wang J. Personalized medicine and pharmacogenetic biomarkers: progress in molecular oncology testing. Expert. Rev. Mol. Diagn. 2012, 12(6), 593–602.

      38. Curigliano G., Locatelli M., Fumagalli L. Targeting the subtypes of breast cancer: rethinking investigational drugs. Expert Opin. Investig. Drugs. 2012, 21(2), 191–204.

      39. McCourt C. M., Boyle D., James J., Salto-Tellez M. Immunohistochemistry in the era of personalised medicine. J. Clin. Pathol.  2013, 66(1), 58–61.

      40. Souchelnytskyi S. Current status and challenges of personalized treatment of cancer: View inspired by the workshop. Exp. Oncol.  2011, 33(3), 166–169.

      41. Aebersold R., Mann M. Mass spectrometry-based proteomics. Nature.  2003, 422(6928), 198–207.

      42. Van den Ouweland J. M., Kema I. P. The role of liquid chromatography-tandem mass spectrometry in the clinical laboratory. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.  2012, V. 883–884, P. 18–32.

      43. Conrotto P., Souchelnytskyi S. Proteomic approaches in biological and medical sciences: principles and applications. Exp. Oncol. 2008, 30(3), 171–180.

      44. Görg A., Weiss W., Dunn M. J. Current two-dimensional electrophoresis technology for proteomics. Proteomics.  2004, 4(12), 3665–3685.

      45. López J. L. Two-dimensional electrophoresis in proteome expression analysis. J. Chromatogr. B.  2007, 849(1–2), 190–202.

      46. Stasyk T., Huber L. A. Zooming in: fractionation strategies in proteomics. Proteomics.  2004, V. 4, P. 3704–3716.

      47. Islinger M., Eckerskorn C., Völkl A. Free-flow electrophoresis in the proteomic era: a technique in flux. Electrophoresis. 2010, 31(11), 1754–1763.

      48. Righetti P. G., Sebastiano R., Citterio A. Capillary electrophoresis and isoelectric focusing in peptide and protein analysis. Proteomics.  2013, 13(2), 325–340.

      49. Xie F., Smith R. D., Shen Y. Advanced proteomic liquid chromatography. J. Chromatogr. A.  2012, V. 1261, P. 78–90.

      50. H S Lu C., Liu K., Tan L. P., Yao S. Q. Current chemical biology tools for studying protein phosphorylation and dephosphorylation. Chemistry. 2012, 18(1), 28–39.

      51. Nodwell M. B., Sieber S. A. ABPP methodology: introduction and overview. Top. Curr. Chem. 2012, V. 324, P. 1–41.

      52. Schwamborn K. Imaging mass spectrometry in biomarker discovery and validation. J. Proteomics.  2012, 75(16), 4990–4998.

      53. Van Eeckhaut A., Maes K., Aourz N. The absolute quantification of endogenous levels of brain neuropeptides in vivo using LC-MS/MS. Bioanalysis. 2011, 3(11), 1271–1285.

      54. Deutsch E. W., Lam H., Aebersold R. PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep. 2008, 9(5), 429–434.

      55. Lee J. R., Magee D. M., Gaster R. S. Emerging protein array technologies for proteomics. Expert. Rev. Proteomics.  2013, 10(1), 65–75.

      56. Sanchez-Carbayo M. Antibody microarrays as tools for biomarker discovery. Methods Mol. Biol. 2011, V. 785, P. 159–182.

      57. Carlsson A., Wingren C., Ingvarsson J. et al. Serum proteome profiling of metastatic breast cancer using recombinant antibody microarrays. Eur. J. Cancer.  2008,. 44(3), 472–480.

      58. Bowen B. P., Northen T. R. Dealing with the unknown: metabolomics and metabolite atlases. J. Am. Soc. Mass. Spectrom. 2010, 21(9), 1471–1476.

      59. O’Connell T. M. Recent advances in metabolomics in oncology. Bioanalysis.  2012, 4(4), 431–451.

      60. Zhou W., Liotta L. A., Petricoin E. F. Cancer metabolism: what we can learn from proteomic analysis by mass spectrometry. Cancer Gen. Proteom.  2012, 9(6), 373–381.