Biotechnologia Acta


  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2021 № 5 DEOXYRIBOZYMES IN DETECTION OF PATHOGENIC BACTERIA K. A. P. Gaminda, I. B. K. Thomas, D. T. Abeysinghe, C. D. Jayasinghe , R. Senthilnithy
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta  Т. 14, No. 5 , 2021
P. 5-20, Bibliography 45, Engl.
UDC: 576.522; 576.523; 576.385.5; 571.27; 616-006


K. A. P. Gaminda 1, I. B. K. Thomas 1, D. T. Abeysinghe 1, C. D. Jayasinghe 2 , R. Senthilnithy 1

1 Department of Chemistry, The Open University of Sri Lanka, Nugegoda
2 Department of Zoology, The Open University of Sri Lanka, Nugegoda

The purpose of the review was to analyze the use of DNAzyme biosensors for the detection of pathogens. In the recent years, deoxyribozymes (DNAzymes) have a significant impact as biosensors in diverse fields, from detection of metal ions in the environment to theranostic applications and detection of microorganisms. Although routinely used sophisticated instrumental methods are available to detect pathogenic bacterial contamination, they involve time-consuming, complicated sample pre-treatment and expensive instruments. As an alternative, pathogen-specific DNAzymes have demonstrated a series of advantages: a non-destructive rapid analysis technique with in situ and real-time detection of bacteria with high sensitivity and selectivity. A wide range of pathogen-specific DNAzymes has been developed using colorimetric and fluorescence-based detections for pathogenic bacterial contamination in various samples. The current review summarizes the in vitro selection of pathogen-specific DNAzymes, various strategies utilized in the sensor designs, and their potential use in theranostic applications.

Key words: Pathogen, DNAzyme, Biosensors, peroxidase mimicking DNAzyme.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021

  • References

      1. Palumbo J. D., Borucki M. K., Mandrell R. E., Gorski L. Serotyping of Listeria monocytogenes by enzyme-linked immunosorbent assay and identification of mixed-serotype cultures by colony immunoblotting. J. Clin. Microbiol. 2003, 41 (2), 564–571.

      2. Järvinen A. K., Laakso S., Piiparinen P., Aittakorpi A., Lindfors M., Huopaniemi L., Mäki M. Rapid identification of bacterial pathogens using a PCR- and microarray-based assay. BMC Microbiol. 2009, 9 (1). 1–16.

      3. Ali M. M., Aguirre S. D., Lazim H., Li Y. Fluorogenic DNAzyme Probes as Bacterial Indicators. Angew. Chemie. 2011, 123 (16), 3835–3838.

      4. Breaker R. R., Joyce G. F. A DNA enzyme that cleaves RNA. Chem. Biol. 1994, 1 (4), 223–229.

      5. Santoro S. W., Joyce G. F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA. 1997, 94 (9), 4262–4266.

      6. Brown A. K., Liu J., He Y., Lu Y. Biochemical characterization of a uranyl ion-specific DNAzyme. Chem. BioChem. 2009, 10 (3), 486–492.

      7. Huang P. J. J., Liu J. Rational evolution of Cd2+-specific DNAzymes with phosphorothioate modified cleavage junction and Cd2+ sensing. Nucleic Acids Res. 2015, 43 (12), 6125–6133.

      8. Huang P. J. J., Lin J., Cao J., Vazin M., Liu J. Ultrasensitive DNAzyme beacon for lanthanides and metal speciation. Anal. Chem. 2014, 86 (3), 1816–1821.

      9. Ma L. A New Na(+)-specific DNAzyme Mutant from in Vitro Selection. University of Waterloo. 2017.

      10. Sambrook J., Russell D. W. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 2001.

      11. Proudnikov D., Mirzabekov A. Chemical methods of DNA and RNA fluorescent labeling. Nucleic Acids Res. 1996, 24 (22), 4535–4542.

      12. Liu J., Cao Z., Lu Y. Functional nucleic acid sensors. Chem. Rev. 2009, 109 (5), 1948–1998.

      13. Thomas I. B. K., Gaminda K. A. P., Jayasinghe C. D., Abeysinghe D. T., Senthilnithy R. DNAzymes, Novel Therapeutic Agents in Cancer Therapy: A Review of Concepts to Applications. Basu A., editor. J. Nucleic Acids. 2021, V. 2021, P. 1–21.

      14. Zhou W., Ding J., Liu J. Theranostic dnazymes. Theranostics. 2017, 7 (4), 1010–1025.

      15. Zhao W., Ali M. M., Brook M. A., Li Y. Rolling circle amplification: Applications in nanotechnology and biodetection with functional nucleic acids. V. 47, Angewandte Chemie ‒ International Edition. Angew. Chem. Int. Ed. Engl. 2008, P. 6330–6337.

      16. Liu Z., Yao C., Wang Y., Yang C. A G-quadruplex DNAzyme-based LAMP biosensing platform for a novel colorimetric detection of: Listeria monocytogenes. Anal. Methods. 2018, 10 (8), 848–854.

      17. Li B., Du Y., Li T., Dong S. Investigation of 3,3′,5,5′-tetramethylbenzidine as colorimetric substrate for a peroxidatic DNAzyme. Anal. Chim. Acta. 2009, 651 (2), 234–240.

      18. Gu L., Yan W., Wu H., Fan S., Ren W., Wang S., Lyu M., Liu J. Selection of DNAzymes for Sensing Aquatic Bacteria: Vibrio Anguillarum. Anal. Chem. 2019, 91 (12), 7887–7893.

      19. Ali M. M., Wolfe M., Tram K., Gu J., Filipe C. D. M., Li Y., Brennan J. D. A DNAzyme-Based Colorimetric Paper Sensor for Helicobacter pylori. Angew. Chem. ‒ Int. Ed. 2019, 58 (29), 9907–9911.

      20. Ali M. M., Slepenkin A., Peterson E., Zhao W. A Simple DNAzyme-Based Fluorescent Assay for Klebsiella pneumoniae. Chem. BioChem. 2019, 20 (7), 906–910.

      21. Rothenbroker M., McConnell E. M., Gu J., Urbanus M. L., Samani S. E., Ensminger A. W. Selection and Characterization of an RNA‐Cleaving DNAzyme Activated by Legionella pneumophila. Angew. Chem. 2021, 133 (9), 4832–4838.

      22. Ma X., Wang C., Qin M., Tian X., Fan S., Zu H., Lyu M., Wang S. Rapid detection of Aeromonas hydrophila with a DNAzyme-based sensor. Food Control. 2021, V. 123, P. 107829.

      23. Aguirre S. D., Monsur Ali M., Kanda P., Li Y. Detection of bacteria using fluorogenic DNAzymes. J. Vis. Exp. 2012, V. 63, P. 1–8.

      24. Aguirre S. D., Ali M. M., Salena B. J., Li Y. A sensitive DNA enzyme-based fluorescent assay for bacterial detection. Biomolecules. 2013, 3 (3), 563–577.

      25. Cao T., Wang Y., Zhao L. L., Wang Y., Tao Y., Heyman J. A. A simple mix-and-read bacteria detection system based on a DNAzyme and a molecular beacon. Chem. Commun. 2019, 55 (51), 7358–7361.

      26. Tram K., Kanda P., Salena B. J., Huan S., Li Y. Translating bacterial detection by DNAzymes into a litmus test. Angew. Chem. ‒ Int. Ed. 2014, 53 (47), 12799–12802.

      27. Liu M., Zhang Q., Brennan J. D., Li Y. Graphene-DNAzyme-based fluorescent biosensor for Escherichia coli detection. MRS Commun. 2018, 8 (3), 687–694.

      28. Zheng L., Qi P., Zhang D. DNA-templated fluorescent silver nanoclusters for sensitive detection of pathogenic bacteria based on MNP-DNAzyme-AChE complex. Sensors Actuators, B Chem. 2018, V. 276, P. 42–47.

      29. Zhou Z., Zhang Y., Guo M., Huang K., Xu W. Ultrasensitive magnetic DNAzyme-copper nanoclusters fluorescent biosensor with triple amplification for the visual detection of E. coli O157:H7. Biosens Bioelectron. 2020, 167 (17), 112475.

      30. Liu M., Zhang Q., Chang D., Gu J., Brennan J. D., Li Y. A DNAzyme Feedback Amplification Strategy for Biosensing. Angew. Chem. ‒ Int. Ed. 2017, 56 (22), 6142–6146.

      31. Sun Y., Chang Y., Zhang Q., Liu M. An origami paper-based device printed with DNAzyme-containing DNA superstructures for Escherichia Coli detection. Micromachines. 2019, 10 (8), 531.

      32. Liu M., Zhang Q., Kannan B., Botton G. A., Yang J., Soleymani L., Brennan J. D., Li Y. Self-Assembled Functional DNA Superstructures as High-Density and Versatile Recognition Elements for Printed Paper Sensors. Angew. Chem. 2018, 130 (38), 12620–12623.

      33. Zhou Z., Brennan J. D., Li Y. A Multi-component All-DNA Biosensing System Controlled by a DNAzyme. Angew. Chem. ‒ Int. Ed. 2020, 59 (26), 10401–10405.

      34. Kusters J. G., Van Vliet A. H. M., Kuipers E. J. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 2006, 19 (3), 449–490.

      35. Suerbaum S., Michetti P. Helicobacter pylori Infection. N Engl. J. Med. 2002, 347 (15), 1175–1186.

      36. Liu Z., Yuan Y., Wu X., Ning Q., Wu S., Fu L. A turn-off colorimetric DNAzyme-aptasensor for ultra-high sensitive detection of viable Cronobacter sakazakii. Sensors Actuators: B Chem. 2020, V. 322, P. 128646.

      37. Li S. T., Zhang Y., Tian J. J., Xu W. T. Luminescent DNAzyme and universal blocking linker Super Polymerase Chain Reaction visual biosensor for the detection of Salmonella. Food Chem. 2020, V. 324, P. 126859.

      38. Ding X., Li H., Deng L., Peng Z., Chen H., Wang D. A novel homogenous detection method based on the self-assembled DNAzyme labeled DNA probes with SWNT conjugates and its application in detecting pathogen. Biosens Bioelectron. 2011, 26 (11), 4596–4600.

      39. Seok Y., Byun J. Y., Mun H., Kim M. G. Colorimetric detection of PCR products of DNA from pathogenic bacterial targets based on a simultaneously amplified DNAzyme. Microchim. Acta. 2014, 181 (15–16), 1965–1971.

      40. Ning Y., Li W., Duan Y., Yang M., Deng L. High Specific DNAzyme-Aptamer Sensor for Salmonella paratyphi A Using Single-Walled Nanotubes–Based Dual Fluorescence-Spectrophotometric Methods. 2014, 19 (7), 1099–1106.

      41. Hui C. Y., Liu M., Li Y., Brennan J. D. A Paper Sensor Printed with Multifunctional Bio/Nano Materials. Angew Chem. ‒ Int. Ed. 2018, 57 (17), 4549–4553.

      42. Sun Y., Duan N., Ma P., Liang Y., Zhu X., Wang Z. Colorimetric Aptasensor Based on Truncated Aptamer and Trivalent DNAzyme for Vibrio parahemolyticus Determination. J. Agric. Food Chem. 2019, 67 (8), 2313–2320.

      43. Qin M., Ma X., Fan S., Wu H., Yan W., Tian X., Lu J., Lyu M., Wang S. Rapid detection of Pseudomonas aeruginosa using a DNAzyme-based sensor. Food Sci. Nutr. 2021, 9 (7), 3873–3884.

      44. Wu C. S., Khaing O. M. K., Fan X. Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano. 2010, 4 (10), 5897–5904.

      45. Zhou Z., Zhang Y., Guo M., Huang K., Xu W. Ultrasensitive magnetic DNAzyme-copper nanoclusters fluorescent biosensor with triple amplification for the visual detection of E. coli O157:H7. Biosens. Bioelectron. 2020, V. 167, P. 112475.


Additional menu

Site search

Site navigation

Home Archive 2021 № 5 DEOXYRIBOZYMES IN DETECTION OF PATHOGENIC BACTERIA K. A. P. Gaminda, I. B. K. Thomas, D. T. Abeysinghe, C. D. Jayasinghe , R. Senthilnithy

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
for information: