Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2021 № 5 In vitro STUDIES OF MAGNESIUM AND PHOSPHORUS COMBINED MEDICATION BASED ON CASEIN Palonko R.I., Pavlyuk O.V., Arnauta O.V., Kalachniuk L.H.
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta  Т. 14, No. 5 , 2021
P. 56-62, Bibliography 31, Engl.
UDC: 577.118
https://doi.org/10.15407/biotech14.05.056

STUDIES OF MAGNESIUM AND PHOSPHORUS COMBINED MEDICATION BASED ON CASEIN

Palonko R.I., Pavlyuk O.V., Arnauta O.V., Kalachniuk L.H.

National University of Life and Environmental Sciences of Ukraine

Aim. The Department of Biochemistry and Physiology of Animals, named after Academician Guly NUBIP of Ukraine, developed magnesium and phosphorus combined medication based on casein. Our aim was to test its bioavailability based on the ability to be hydrolyzed by a mixture of pancreatic digestive enzymes trypsin and chymotrypsin, also check the absence of cytotoxic effects on cell cultures.

Methods. To assess bioavailability, we used hydrolysis of the medication with a mixture of trypsin and chymotrypsin, followed by detection of hydrolysis products by polyacrylamide gel electrophoresis. A standard MTT-test performed on both MT-4 and Namalva cell lines was used to assess cytotoxic effects.

Results. Based on electrophoresis data, it was found that despite chemical modifications of the natural casein, the medication based on it is characterized by a high ability to hydrolyze by digestive enzymes under the same conditions as casein. Also, an MTT-test demonstrates that the medication has no cytotoxic properties against cell lines MT-4 and Namalva.

Conclusions. Since the negative effects of the drug associated with its digestibility and toxicity have not been observed, it is recommended to continue the study of its effects on living organisms.

Key words: magnesium, phosphorus, casein, chelate, in vitro, hydrolysis, cell culture, cytotoxicity, MTT reagent, NADH (nicotinamide adenine dinucleotide).

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021

  • References
    • 1. Pasternak K., Kocot J., Horecka A. Biochemistry of Magnesium. J. Elem. 2010, 15 (3), 601–616. https://doi.org/10.5601/jelem.2010.15.3.601-616

      2. Fawcett W. J., Haxby E. J., Male D. A. Magnesium: Physiology and Pharmacology. Brit. J. Anesthesia. 1999, 83 (2), 302–320. https://doi.org/10.1093/bja/83.2.302

      3. Elin R. J. Magnesium Metabolism in Health and Disease. Disease-a-Month. 1988, 34 (4), 161–218. https://doi.org/10.1016/0011-5029(88)90013-2

      4. Swaminathan R. Magnesium Metabolism and its Disorders. Clin. Biochem. Rev. 2003, 24 (2), 47–66. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855626/

      5. Butafosfan: Committee for Veterinary Medicinal Products, Summary Report 1. The European Agency for the Evaluation of Medicinal Products, Veterinary Medicines, and Information Technology Unit. 1999, 630 (99), 1–3. https://www.ema.europa.eu/en/documents/mrl-report/butafosfan-summary-report-1-committee-veterinary-medicinal-products_en.pdf

      6. Kreipe L., Deniz A., Bruckmaier R. M., van Dorland H. A. First Report about the Mode of Action of Combined Butafosfan and Cyanocobalamin on Hepatic Metabolism in Nonketotic Early Lactating Cows. J. Dairy Sci. 2011, 94 (10), 4904–4914. https://doi.org/10.3168/jds.2010-4080

      7. Breymann C., Honegger C., Hösli I., Surbek D. Diagnosis and Treatment of Iron-Deficiency Anaemia in Pregnancy and Postpartum. Arch. Gynecol. Obstetrics. 2017, 296 (6), 1229–1234. https://doi.org/10.1007/s00404-017-4526-2

      8. Fong J., Khan A. Hypocalcemia: Updates in Diagnosis and Management for Primary Care. Canadian Family Physician Medecin de Famille Canadien. 2012, 58 (2), 158–162. https://www.researchgate.net/publication/221968045_Hypocalcemia_Updates_in_diagnosis_and_management_for_primary_care

      9. Shenkin A. Micronutrients in Health and Disease. Postgraduate Med. J. 2006, 82 (971), 559–567. https://doi.org/10.1136/pgmj.2006.047670

      10. Robberecht H., Verlaet A., Breynaert A., De Bruyne T., Hermans N. Magnesium, Iron, Zinc, Copper, and Selenium Status in Attention-Deficit/Hyperactivity Disorder (ADHD). Molecules. 2020, 25 (19), 4440. https://doi.org/10.3390/molecules25194440

      11. Hertrampf E., Olivares M. Iron Amino Acid Chelates. Int. J. Vitamin and Nutrition Res. 2004, 74 (6), 435–443.  https://doi.org/10.1024/0300-9831.74.6.435

      12. Chaudhary D. P., Boparai R. K., Bansal D. D. Implications of Oxidative Stress in High Sucrose Low Magnesium Diet-Fed Rats. Eur. J. Nutrition. 2007, 46 (7), 383–390. https://doi.org/10.1007/s00394-007-0677-4

      13. Jeppsen R. B. Toxicology and Safety of Ferrochel and Other Iron Amino Acid Chelates. Archivos Latinoamericanos de Nutrición. 2001, 51 (1), 26–34. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0004-06222001000500006

      14. Pineda O., Ashmead H. D. Effectiveness of Treatment of Iron-Deficiency Anemia in Infants and Young Children with Ferrous Bis-Glycinate Chelate. Nutrition. 2001, 17 (5), 381–384. https://doi.org/10.1016/S0899-9007(01)00519-6

      15. Walker A. F., Marakis G., Christie S., Byng M. Mg Citrate Found More Bioavailable than Other Mg Preparations in a Randomized, Double-Blind Study. Magnesium Res. 2003, 16 (3), 183–191. https://pubmed.ncbi.nlm.nih.gov/14596323/

      16. José A. J., Vasconcelos A. R., Valzachi Rocha Maluf M. C. Iron Bisglycinate Chelate and Polymaltose Iron for the Treatment of Iron Deficiency Anemia: A Pilot Randomized Trial. Current Pediatric Rev. 2018, 14 (4), 261–268. https://doi.org/10.2174/1573396314666181002170040

      17. Kalachnyuk L. H., Arnauta A. V., Veryovka V. M., Palonko R. I., Veterinary Drug Biophosphomag. UA Patent 139705. January 10, 2020.

      18. Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals. Note for Guidance on Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals. In ICH Topic S6 (R1) Document. https://www.ema.europa.eu/en/ich-s6-r1-preclinical-safety-evaluation-biotechnology-derived-pharmaceuticals

      19. Alarcón F., Moyano F., Díaz M. Use of SDS-Page in the Assessment of Protein Hydrolysis by Fish Digestive Enzymes. Aquaculture Int. 2001, V. 9, P. 255–267. https://doi.org/10.1023/A:1016809014922

      20. Fotakis G., Timbrell J. A. In Vitro Cytotoxicity Assays: Comparison of LDH, Neutral Red, MTT and Protein Assay in Hepatoma Cell Lines Following Exposure to Cadmium Chloride. Toxicol. Letters. 2006, 160 (2), 171–177. https://doi.org/10.1016/j.toxlet.2005.07.001

      21. Mosmann T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods. 1983, 65 (1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

      22. Palonko R., Arnauta O., Prys-Kadenko V., Smirnov O., Kalachniuk L. Combined Preparation Based on Chelating Magnesium by Phosphorylated Casein: Characteristics of its Synthesis. ScienceRise: Biol. Sci. 2021, 1 (26), 27–31. https://doi.org/10.15587/2519-8025.2021.228758

      23. Deng Yuxi, Gruppen H., Wierenga P. A. Comparison of Protein Hydrolysis Catalyzed by Bovine, Porcine, and Human Trypsins. J. Agric. Food Chem. 2018, 66 (16), 4219–4232. https://doi.org/10.1021/acs.jafc.8b00679

      24. A Guide to Polyacrylamide Gel Electrophoresis and Detection. Bulletin 6040. Bio-Rad Laboratories, Inc. https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6040.pdf

      25. Electrophoresis (2.2.31.). European Pharmacopoeia. Council of Europe. 2019, 10 (1), 51–57.

      26. Ramos Y., Gutierrez E., Machado Y., Sánchez A., Castellanos-Serra L., González L. J., Fernández-de-Cossio J., Pérez-Riverol Y., Betancourt L., Gil J., Padrón G., Besada V. Proteomics Based on Peptide Fractionation by SDS. J. Proteome Res. 2008, 7 (6), 2427–2434. https://doi.org/10.1021/pr700840y

      27. Macej D. O., Jovanovic T. S., Djurdjevic D. J. The Influence of High Temperature on Milk Proteins. Chem. Industry. 2002, V. 56, P. 123–132. https://doi.org/10.2298/HEMIND0203123M

      28. Jovanovic S. SDS-PAGE Analysis of Soluble Proteins in Reconstituted Milk Exposed to Different Heat Treatments. Sensors. 2007, 7 (3), 371–383. https://doi.org/10.3390/s7030371

      29. Miralles B., Sanchón J., Sánchez-Rivera L., Martínez-Maqueda D., Le Gouar Y., Dupont D., Amigo L., Recio I. Digestion of Micellar Casein in Duodenum Cannulated Pigs: Correlation Between in Vitro Simulated Gastric Digestion and in Vivo Data. Food Chem. 2021, V. 343, P. 128424. https://doi.org/10.1016/j.foodchem.2020.128424

      30. Oguri S., Kumazaki M., Kitou R., Nonoyama H., Tooda N. Elucidation of Intestinal Absorption of D, L-Amino Acid Enantiomers and Aging in Rats. Biochim. Biophys. Acta. 1999, 1472 (1–2), 107–114. https://doi.org/10.1016/S0304-4165(99)00110-5

      31. Scheers E. M., Ekwall B., Dierickx P. J. In Vitro Long-Term Cytotoxicity Testing of 27 MEIC Chemicals on Hep G2 Cells and Comparison with Acute Human Toxicity Data. Toxicology in Vitro: An Int. J. Published in Association with BIBRA. 2001, 15 (2), 153–161. https://doi.org/10.1016/S0887-2333(00)00062-X



 

Additional menu

Site search

Site navigation

Home Archive 2021 № 5 In vitro STUDIES OF MAGNESIUM AND PHOSPHORUS COMBINED MEDICATION BASED ON CASEIN Palonko R.I., Pavlyuk O.V., Arnauta O.V., Kalachniuk L.H.

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.