Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2021 № 4 CIRCULATING TUMOR CELLS: WHERE WE LEFT OFF? I. Kryvoshlyk, L. Skivka
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta V. 14, No 4, 2021
Р. 5-27, Bibliography 155, English
Universal Decimal Classification: 576.522; 576.523; 576.385.5; 571.27; 616-006
https://doi.org/10.15407.biotech14.04.005

CIRCULATING TUMOR CELLS: WHERE WE LEFT OFF?

I. Kryvoshlyk, L. Skivka

ESC “Institute of Biology and Medicine” Taras Shevchenko National University of Kyiv, Ukraine

Cancer metastasis and recurrence are the leading causes of cancer-related death. Tumor cells which leave the primary or secondary tumors and shed into the bloodstream are called circulating tumor cells (CTC). These cells are the key drivers of cancer dissemination to surrounding tissues and to distant organs. The use of CTC in clinical practice necessitates the deep insight into their biology, as well as into their role in cancer evasion of immune surveillance, tumor resistance to chemo- radio- and immunotherapies and metastatic dormancy.

Aim. The purpose of the work was to review the current knowledge on the CTC biology, as well as the prospects for their use for the diagnosis and targeted treatment of metastatic disease.

Methods. The work proposed the integrative literature review using MEDLINE, Biological Abstracts and EMBASE databases.

Results. This review summarizes and discusses historical milestones and current data concerning СTС biology, the main stages of their life cycle, their role in metastatic cascade, clinical prospects for their use as markers for the diagnosis and prognostication of the disease course, as well as targets for cancer treatment.

Conclusions. Significant progress in the area of CTC biology and their use in cancer theranostics convincingly proved the attractiveness of these cells as targets for cancer prognosis and therapy. The effective use of liquid biopsy with quantitative and phenotypic characteristics of CTCs is impeded by the imperfection of the methodology for taking biological material and by the lack of reliable markers for assessing the metastatic potential of CTCs of various origins. The variety of mechanisms of tumor cells migration and invasion requires the development of complex therapeutic approaches for anti-metastatic therapy targeting CTCs. Efforts to address these key issues could help developing new and effective cancer treatment strategies.

Key words: circulating tumor cells, circulating tumor microembols, metastasis, epithelial mesenchymal transition, minimal residual disease.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021

  • References
    • 1. Bettio M., Carvalho R. N., Dimitrova N., Dyba T., Flego M., Giusti F., Martos C., Neamtiu L., Nicholson N., Randi G., Nicholl C. European Commission, Joint Research Centre (JRC), Ispra, Italy. EMJ Oncol. 2019, 7 (1), 48–49. Abstract No AR05. https://www.emjreviews.com/oncology/abstract/measuring-the-cancer-burden-in-europe-the-european-cancer-information-system-ecis/

      2. Siegel R. L., Miller K. D., Jemal A. Cancer statistics, 2020. CA: A Cancer Journal for Clinicians. 2020, 70 (1), 7–30. https://doi.org/10.3322/caac.21590

      3. Galmarini C. M. Lessons from Hippocrates: Time to Change the Cancer Paradigm. International Journal of Chronic Diseases. 2020, V. 2020, P. 4715426. https://doi.org/10.1155/2020/4715426

      4. LeDran H. F. Mémoire avec un précis de plusieurs observations sur le cancer. Memories de l’academie royale de chirurgie. 1757, V. 3, P. 1–54.

      5. Récamier J. C. Recherchessurletraitement du cancer sur la compression methodique simple ou combinee et sur l'histoire generale de la meme maladie, 2nd ed.1829. Gabon, Paris.

      6. Thiersch K. Der Epithelial krebs, namentlich der Hand. 1865. Engelmann, Leipzig.

      7. Langenbeck B. On the development of cancer in the veins, and the transmission ofcancer from man to the lower animals. Edinb. Med. Surg. J. 1841, 55 (147), 251–253.

      8. Virchow R. Cellular pathologie. Nutr. Rev. 1858, P. 23–25.

      9. Ashworth T. R. A case of cancer in which cells similar to those in the tumors wereseen in the blood after death. Aust. Med. J. 1869, V. 14, P. 146–149.

      10. Engel H. C. Cancer cells in the blood; a five to nine year follow up study. Ann. Surg. 1959, 149 (4), 457–461. https://doi.org/10.1097/00000658-195904000-00001

      11. Pantel K., Schlimok G., Braun S., Kutter D., Lindemann F., Schalle, G., Funke I., Izbicki J. R., & Riethmüller G. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl. Cancer Inst. 1993, 85 (17), 1419–1424. https://doi.org/10.1093/jnci/85.17.1419

      12. Pantel K., Izbicki J., Passlick B., Angstwurm M., Häussinger K., Thetter O., Riethmüller G. Frequency and prognostic significance of isolated tumour cells in bone marrow of patients with non-small-cell lung cancer without overt metastases. Lancet. 1996, 347 (9002), 649–653. https://doi.org/10.1016/S0140-6736(96)91203-9

      13. Nowell P. C. The clonal evolution of tumor cell populations. Science. 1976, 194 (4260), 23–28. https://doi.org/10.1126/science.959840

      14. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl. J. Med. 1971, 285 (21), 1182–1186. https://doi.org/10.1056/NEJM197111182852108

      15. Folkman J., Watson K., Ingber D., Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989, 339 (6219), 58–61. https://doi.org/10.1038/339058a0

      16. Liotta L. A., Steeg P. S., Stetler-Stevenson W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991, 64 (2), 327–336. https://doi.org/10.1016/0092-8674(91)90642-C

      17. Liotta L. A., Kleinerman J., Saidel G. M. Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 1974, 34 (5), 997–1004.

      18. Prasetyanti P. R., Medema J. P. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer. 2017, 16 (1), 41. https://doi.org/10.1186/s12943-017-0600-4

      19. Albini A., Bruno A., Gallo C., Pajardi G., Noonan D. M., Dallaglio K. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity. Connect. Tissue Res. 2015, 56 (5), 414–425. https://doi.org/10.3109/03008207.2015.1066780

      20. Fouad Y. A., Aanei C. Revisiting the hallmarks of cancer. Am. J. Cancer Res. 2017, 7 (5), 1016–1036.

      21. Greenburg G., Hay E. D. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J. Cell Biol. 1982, 95 (1), 333–339. https://doi.org/10.1083/jcb.95.1.333

      22. Jalal S., Shi S., Acharya V., Huang R. Y., Viasnoff V., Bershadsky A. D., Tee Y. H. Actin cytoskeleton self-organization in single epithelial cells and fibroblasts under isotropic confinement. J. Cell Sci. 2019, 132 (5), jcs220780. https://doi.org/10.1242/jcs.220780

      23. Karamanou K., Franchi M., Vynios D., Brézillon S. Epithelial-to-mesenchymal transition and invadopodia markers in breast cancer: Lumican a key regulator. Semin. Cancer Biol. 2020, V. 62, P. 125–133. https://doi.org/10.1016/j.semcancer.2019.08.003

      24. Liao T. T., Yang M. H. Hybrid Epithelial/Mesenchymal State in Cancer Metastasis: Clinical Significance and Regulatory Mechanisms. Cells. 2020, 9 (3), 623. https://doi.org/10.3390/cells9030623

      25. Nersesian S., Williams R., Newsted D., Shah K., Young S., Evans P. A., Allingham J. S., Craig, A. W. Effects of Modulating Actin Dynamics on HER2 Cancer Cell Motility and Metastasis. Sci Rep. 2018, 8 (1), 17243. https://doi.org/10.1038/s41598-018-35284-9

      26. Chaffer C. L., San Juan B. P., Lim E., Weinberg R. A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 2016, 35 (4), 645–654. https://doi.org/10.1007/s10555-016-9648-7

      27. Peixoto P., Etcheverry A., Aubry M., Missey A., Lachat C., Perrard J., Hendrick E., Delage-Mourroux R., Mosser J., Borg C., Feugeas J. P., Herfs M., Boyer-Guittaut M., Hervouet E. EMT is associated with an epigenetic signature of ECM remodeling genes. Cell Death Dis. 2019, 10 (3), 205. https://doi.org/10.1038/s41419-019-1397-4

      28. Ridley A. J. Rho GTPase signalling in cell migration. Curr. Opin. Cell Biol. 2015, V. 36, P. 103–112. hhttps://doi.org/10.1016/j.ceb.2015.08.005

      29. Kazanietz M. G., Caloca M. J. The Rac GTPase in Cancer: From Old Concepts to New Paradigms. Cancer Res. 2017, 77 (20), 5445–5451. https://doi.org/10.1158/0008-5472.CAN-17-1456

      30. Gonzalez D. M., Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signaling. 2014, 7 (344), re8. https://doi.org/10.1126/scisignal.2005189

      31. Nieszporek A., Skrzypek K., Adamek G., Majka M. Molecular mechanisms of epithelial to mesenchymal transition in tumor metastasis. Acta Biochim. Pol. 2019, 66 (4), 509–520. https://doi.org/10.18388/abp.2019_2899

      32. Ribatti D., Tamma R., Annese T. Epithelial-Mesenchymal Transition in Cancer: A Historical Overview. Transl. Oncol. 2020, 13 (6), 100773. https://doi.org/10.1016/j.tranon.2020.100773

      33. Jolly M. K., Ware K. E., Gilja S., Somarelli J. A., Levine H. EMT and MET: necessary or permissive for metastasis? Mol. Oncol. 2017, 11 (7), 755–769.https://doi.org/10.1002/1878-0261.12083

      34. Pastushenko I., Brisebarre A., Sifrim A., Fioramonti M., Revenco T., Boumahdi S., Van Keymeulen A., Brown D., Moers V., Lemaire S., De Clercq S., Minguijón E., Balsat C., Sokolow Y., Dubois C., De Cock F., Scozzaro S., Sopena F., Lanas A., D'Haene N., Blanpain C. Identification of the tumour transition states occurring during EMT. Nature. 2018, 556 (7702), 463–468. https://doi.org/10.1038/s41586-018-0040-3

      35. Derynck R., Weinberg R. A. EMT and Cancer: More Than Meets the Eye. Dev. Cell. 2019, 49 (3), 313–316. https://doi.org/10.1016/j.devcel.2019.04.026

      36. Claudia Tanja Mierke. Physics of Cancer, Volume 1: Interplay between tumor biology, inflammation and cell mechanics. Published October 2018. Copyright © IOP Publishing Ltd. 2018. CHAPTER 1. Initiation of a neoplasm or tumor. https://doi.org/10.1088/978-0-7503-1753-5ch1

      37. Kim D. H., Xing T., Yang Z., Dudek R., Lu Q., Chen Y. H. Epithelial Mesenchymal Transition in Embryonic Development, Tissue Repair and Cancer: A Comprehensive Overview. J. Clin. Med. 2017, 7 (1), 1. https://doi.org/10.3390/jcm7010001

      38. Faheem M. M., Seligson N. D., Ahmad S. M., Rasool R. U., Gandhi S. G., Bhagat M., Goswami A. Convergence of therapy-induced senescence (TIS) and EMT in multistep carcinogenesis: current opinions and emerging perspectives. Cell Death. Discov. 2020, V. 6, P. 51. https://doi.org/10.1038/s41420-020-0286-z

      39. Jordan N. V., Johnson G. L., Abell A. N. Tracking the intermediate stages of epithelial-mesenchymal transition in epithelial stem cells and cancer. Cell Cycle. 2011, 10 (17), 2865–2873. https://doi.org/10.4161/cc.10.17.17188

      40. Cao Z., Livas T., Kyprianou N. Anoikis and EMT: Lethal "Liaisons" during Cancer Progression. Crit. Rev. Oncog. 2016, 21 (3–4), 155–168.https://doi.org/10.1615/CritRevOncog.2016016955

      41. Wei C., Yang C., Wang S., Shi D., Zhang C., Lin X., Liu Q., Dou R., Xiong B. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol. Cancer. 2019, 18 (1), 64. https://doi.org/10.1186/s12943-019-0976-4

      42. Yang C., Dou R., Wei C., Liu K., Shi D., Zhang C., Liu Q., Wang S., Xiong B. Tumor-derived exosomal microRNA-106b-5p activates EMT-cancer cell and M2-subtype TAM interaction to facilitate CRC metastasis. Mol. Ther. 2021, 29 (6), 2088–2107. https://doi.org/10.1016/j.ymthe.2021.02.006

      43. Cortés M., Sanchez-Moral L., de Barrios O., Fernández-Aceñero M. J., Martínez-Campanario M. C., Esteve-Codina A., Darling D. S., Győrffy B., Lawrence T., Dean D. C., Postigo A. Tumor-associated macrophages (TAMs) depend on ZEB1 for their cancer-promoting roles. EMBO J. 2017, 36 (22), 3336–3355. https://doi.org/10.15252/embj.201797345

      44. Xu R., Won J. Y., Kim C. H., Kim D. E., Yim H. Roles of the Phosphorylation of Transcriptional Factors in Epithelial-Mesenchymal Transition. J. Oncol. 2019, V. 2019, P. 5810465. https://doi.org/10.1155/2019/5810465

      45. Alidadiani N., Ghaderi S., Dilaver N., Bakhshamin S., Bayat M. Epithelial mesenchymal transition Transcription Factor (TF): The structure, function and microRNA feedback loop. Gene. 2018, V. 674, P. 115–120. https://doi.org/10.1016/j.gene.2018.06.049

      46. Mohammed S. I., Torres-Luquis O., Walls E., Lloyd F. Lymph-circulating tumor cells show distinct properties to blood-circulating tumor cells and are efficient metastatic precursors. Mol. Oncol. 2019, 13 (6), 1400–1418. https://doi.org/10.1002/1878-0261.12494

      47. Kolostova K., Pospisilova E., Pavlickova V., Bartos R., Sames M., Pawlak I., Bobek V. Next generation sequencing of glioblastoma circulating tumor cells: non-invasive solution for disease monitoring. Am. J. Transl. Res. 2021, 13 (5), 4489–4499.

      48. Kowalik A., Kowalewska M., Góźdź S. Current approaches for avoiding the limitations of circulating tumor cells detection methods-implications for diagnosis and treatment of patients with solid tumors. Transl. Res. 2017, V. 185, P. 58–84.e15.https://doi.org/10.1016/j.trsl.2017.04.002

      49. Christou N., Meyer J., Popeskou S., David V., Toso C., Buchs N., Liot E., Robert J., Ris F., Mathonnet M. Circulating Tumour Cells, Circulating Tumour DNA and Circulating Tumour miRNA in Blood Assays in the Different Steps of Colorectal Cancer Management, a Review of the Evidence in 2019. Biomed. Res. Int. 2019, V. 2019, P. 5953036. https://doi.org/10.1155/2019/5953036

      50. Millner L. M., Linder M. W., Valdes R. Jr. Circulating tumor cells: a review of present methods and the need to identify heterogeneous phenotypes. Ann. Clin. Lab. Sci. 2013, 43 (3), 295–304.

      51. Plaks V., Kong N., Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem. Cell. 2015, 16 (3), 225–238. https://doi.org/10.1016/j.stem.2015.02.015

      52. Agnoletto C., Corrà F., Minotti L., Baldassari F., Crudele F., Cook W. J. J., Di Leva G., d'Adamo A. P., Gasparini P., Volinia S. Heterogeneity in Circulating Tumor Cells: The Relevance of the Stem-Cell Subset. Cancers (Basel). 2019, 11 (4), 483. https://doi.org/10.3390/cancers11040483

      53. Wang W. C., Zhang X. F., Peng J., Li X. F., Wang A. L., Bie Y. Q., Shi L. H., Lin M. B., Zhang X. F. Survival Mechanisms and Influence Factors of Circulating Tumor Cells. Biomed. Res. Int. 2018, V. 2018, P. 6304701. https://doi.org/10.1155/2018/6304701

      54. Krog B. L., Henry M. D. Biomechanics of the Circulating Tumor Cell Microenvironment. Adv. Exp. Med. Biol. 2018, V. 1092, P. 209–233. https://doi.org/10.1007/978-3-319-95294-9_11

      55. Sprouse M. L., Welte T., Boral D., Liu H. N., Yin W., Vishnoi M., Goswami-Sewell D., Li L., Pei G., Jia P., Glitza-Oliva I. C., Marchetti D. PMN-MDSCs Enhance CTC Metastatic Properties through Reciprocal Interactions via ROS/Notch/Nodal Signaling. Int. J. Mol. Sci. 2019, 20 (8), 1916. https://doi.org/10.3390/ijms20081916

      56. Choi H. Y., Yang G. M., Dayem A. A., Saha S. K., Kim K., Yoo Y., Hong K., Kim J. H., Yee C., Lee K. M., Cho S. G. Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3β activities. Breast Cancer Res. 2019, 21 (1), 6. https://doi.org/10.1186/s13058-018-1071-2

      57. Dianat-Moghadam H., Azizi M., Eslami-S Z., Cortés-Hernández L. E., Heidarifard M., Nouri M., Alix-Panabières C. The Role of Circulating Tumor Cells in the Metastatic Cascade: Biology, Technical Challenges, and Clinical Relevance. Cancers (Basel). 2020, 12 (4), 86. https://doi.org/10.3390/cancers12040867

      58. Alexandrova A. Y., Chikina A. S., Svitkina T. M. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. Int. Rev. Cell. Mol. Biol. 2020, V. 356, P. 197–256. https://doi.org/10.1016/bs.ircmb.2020.06.002

      59. Wu J. S., Jiang J., Chen B. J., Wang K., Tang Y. L., Liang X. H. Plasticity of cancer cell invasion: Patterns and mechanisms. Transl. oncol. 2021, 14 (1), 100899. https://doi.org/10.1016/j.tranon.2020.100899

      60. Chen L., Bode A. M., Dong Z. Circulating Tumor Cells: Moving Biological Insights into Detection. Theranostics. 2017, 7 (10), 2606–2619. ttps://doi.org/10.7150/thno.18588

      61. Jones B. C., Kelley L. C., Loskutov Y. V., Marinak K. M., Kozyreva V. K., Smolkin M. B., Pugacheva E. N. Dual Targeting of Mesenchymal and Amoeboid Motility Hinders Metastatic Behavior. Mol. Cancer Res. 2017, 15 (6), 670–682. https://doi.org/10.1158/1541-7786.MCR-16-0411

      62. Yu M. Metastasis Stemming from Circulating Tumor Cell Clusters. Trends Cell Biol. 2019, 29 (4), 275–276. https://doi.org/10.1016/j.tcb.2019.02.001

      63. Giuliano M., Shaikh A., Lo H. C., Arpino G., De Placido S., Zhang X. H., Cristofanilli M., Schiff R., Trivedi M. V. Perspective on Circulating Tumor Cell Clusters: Why It Takes a Village to Metastasize. Cancer Res. 2018, 78 (4), 845–852. https://doi.org/10.1158/0008-5472.CAN-17-2748

      64. Aktary Z., Alaee M., Pasdar M. Beyond cell-cell adhesion: Plakoglobin and the regulation of tumorigenesis and metastasis. Oncotarget. 2017, 8 (19), 32270–32291. https://doi.org/10.18632/oncotarget.15650

      65. Lim S. B., Yeo T., Lee W. D., Bhagat A. A. S., Tan S. J., Tan D. S. W., Lim W. T., Lim C. T. Addressing cellular heterogeneity in tumor and circulation for refined prognostication. Proc. Natl. Acad. Sci. USA. 2019, 116 (36), 17957–17962. https://doi.org/10.3390/ijms21072653

      66. Amintas S., Bedel A., Moreau-Gaudry F., Boutin J., Buscail L., Merlio J. P., Vendrely V., Dabernat S., Buscail E. Circulating Tumor Cell Clusters: United We Stand Divided We Fall. Int. J. Mol. Sci. 2020, 21 (7), 2653. https://doi.org/10.3390/ijms21072653

      67. Castro-Giner F., Aceto N. Tracking cancer progression: from circulating tumor cells to metastasis. Genome Med. 2020, 12 (1), 31. https://doi.org/10.1186/s13073-020-00728-3

      68. Mentis A. A., Grivas P. D., Dardiotis E., Romas N. A., Papavassiliou A. G. Circulating tumor cells as Trojan Horse for understanding, preventing, and treating cancer: a critical appraisal. Cell Mol. Life Sci. 2020, 77 (18), 3671–3690. https://doi.org/10.1007/s00018-020-03529-4

      69. Micalizzi D. S., Maheswaran S., Haber D. A. A conduit to metastasis: circulating tumor cell biology. Genes. Dev. 2017, 31 (18), 1827–1840. https://doi.org/10.1101/gad.305805.117

      70. Anvari S., Osei E., Maftoon N. Interactions of platelets with circulating tumor cells contribute to cancer metastasis. Sci. Rep. 2021, 11 (1), 15477. https://doi.org/10.1038/s41598-021-94735-y

      71. Jiang X., Wong K. H. K., Khankhel A. H., Zeinali M., Reategui E., Phillips M. J., Luo X., Aceto N., Fachin F., Hoang A. N., Kim W., Jensen A. E.,. Sequist L. V., Maheswaran S., Haber D. A., Stott S. L., Toner M. Microfluidic isolation of platelet-covered circulating tumor cells. Lab. Chip. 2017, 17 (20), 3498‒3503. https://doi.org/10.1039/C7LC00654C

      72. Yang L., Shi P., Zhao G., Xu J., Peng W., Zhang J., Zhang G., Wang X., Dong Z., Chen F., Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther. 2020, 5 (1), 8. https://doi.org/10.1038/s41392-020-0110-5

      73. Gkountela S., Castro-Giner F., Szczerba B. M., Vetter M., Landin J., Scherrer R., Krol I., Scheidmann M. C., Beisel C., Stirnimann C. U., Kurzeder C., Heinzelmann-Schwarz V., Rochlitz C., Weber W. P., Aceto N. Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding. Cell. 2019, 176 (1‒2), 98‒112.e14. https://doi.org/10.1016/j.cell.2018.11.046

      74. Lei M. M. L., Lee T. K. W. Cancer Stem Cells: Emerging Key Players in Immune Evasion of Cancers. Front. Cell Dev. Biol. 2021, V. 9, P. 692940. https://doi.org/10.3389/fcell.2021.692940

      75. Nicolini A., Rossi G., Ferrari P., Carpi A. Minimal residual disease in advanced or metastatic solid cancers: The G0-G1 state and immunotherapy are key to unwinding cancer complexity. Semin. Cancer Biol. 2020, S1044-579X(20)30075-4. https://doi.org/10.1016/j.semcancer.2020.03.009

      76. Tjensvoll K., Nordgård O., Skjæveland M., Oltedal S., Janssen E. A. M., Gilje B. Detection of disseminated tumor cells in bone marrow predict late recurrences in operable breast cancer patients. BMC Cancer. 2019, 19 (1), 1131. https://doi.org/10.1186/s12885-019-6268-y

      77. Risson E., Nobre A. R., Maguer-Satta V., Aguirre-Ghiso J. A. The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat. Cancer. 2020, 1 (7), 672‒680. https://doi.org/10.1038/s43018-020-0088-5

      78. Marconato L., Facchinetti A., Zanardello C., Rossi E., Vidotto R., Capello K., Melchiotti E., Laganga P., Zamarchi R., Vascellari M. Detection and Prognostic Relevance of Circulating and Disseminated Tumour Cell in Dogs with Metastatic Mammary Carcinoma: A Pilot Study. Cancers (Basel). 2019, 11 (2), 163. https://doi.org/10.3390/cancers11020163

      79. O'Sullivan B., Brierley J., Byrd D., Bosman F., Kehoe S., Kossary C., Piñeros M., Van Eycken E., Weir H. K., Gospodarowicz M. The TNM classification of malignant tumours-towards common understanding and reasonable expectations. Lancet Oncol. 2017, 18 (7), 849‒851. https://doi.org/10.1016/S1470-2045(17)30438-2

      80. Aguirre-Ghiso J., Sosa M. Emerging Topics on Disseminated Cancer Cell Dormancy and the Paradigm of Metastasis. Ann. Rev. Cancer Biol. 2018, V. 2, Р. 377–393. https://doi.org/10.1146/annurev-cancerbio-030617-050446

      81. Kilickap S., Aktas B. Y., Ozisik Y. Y. (2019) Bone Marrow Micrometastases and Circulating Tumor Cells. In: Aydiner A., Igci A., Soran A. (eds). Breast Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-04606-4_13

      82. Piranlioglu R., Lee E., Ouzounova M., Bollag R. J., Vinyard A. H., Arbab A. S., Marasco D., Guzel M., Cowell J. K., Thangaraju M., Chadli A., Hassan K. A., Wicha M. S., Celis E., Korkaya H. Primary tumor-induced immunity eradicates disseminated tumor cells in syngeneic mouse model. Nat. Commun. 2019, 10 (1), 1430. https://doi.org/10.1038/s41467-019-09015-1

      83. Marcuzzi E., Angioni R., Molon B., Calì B. Chemokines and Chemokine Receptors: Orchestrating Tumor Metastasization. Int. J. Mol. Sci. 2019, 20 (1), 96. https://doi.org/10.3390/ijms20010096

      84. Rafii S., Butler J. M., Ding B. S. Angiocrine functions of organ-specific endothelial cells. Nature. 2016, 529 (7586), 316–325. https://doi.org/10.1038/nature17040

      85. Rycaj K., Li H., Zhou J., Chen X., Tang D. G. Cellular determinants and microenvironmental regulation of prostate cancer metastasis. Semin. Cancer Biol. 2017, V. 44, P. 83‒97. https://doi.org/10.1016/j.semcancer.2017.03.009

      86. Dasgupta A., Lim A. R., Ghajar C. M. Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Mol. Oncol. 2017, 11 (1), 40–61. https://doi.org/10.1002/1878-0261.12022

      87. Zhang W., Bado I., Wang H., Lo H. C., Zhang X. H. Bone Metastasis: Find Your Niche and Fit in. Trends in Cancer. 2019, 5 (2), 95–110. https://doi.org/10.1016/j.trecan.2018.12.004

      88. Sowder M. E., Johnson R. W. Bone as a Preferential Site for Metastasis. JBMR Plus. 2019, 3 (3), e10126. https://doi.org/10.1002/jbm4.10126

      89. Esposito M., Guise T., Kang Y. The Biology of Bone Metastasis. Cold Spring Harb. Perspect. Med. 2018, 8 (6), a031252. https://doi.org/10.1101/cshperspect.a031252

      90. Haider M. T., Smit D. J., Taipaleenmäki H. The Endosteal Niche in Breast Cancer Bone Metastasis. Front. Oncol. 2020, V. 10, P. 335. https://doi.org/10.3389/fonc.2020.00335

      91. Liu C., Zhao Q., Yu X. Bone Marrow Adipocytes, Adipocytokines, and Breast Cancer Cells: Novel Implications in Bone Metastasis of Breast Cancer. Front. Oncol. 2020, V. 10, P. 561595. https://doi.org/10.3389/fonc.2020.561595

      92. Carvalho R., Paredes J., Ribeiro A. S. Impact of breast cancer cells´ secretome on the brain metastatic niche remodeling. Semin. Cancer Biol. 2020, V. 60, P. 294‒301. https://doi.org/10.1016/j.semcancer.2019.10.011

      93. Seano G. Targeting the perivascular niche in brain tumors. Curr. Opin. Oncol. 2018, 30 (1), 54–60. https://doi.org/10.1097/CCO.0000000000000417

      94. Maru Y. The lung metastatic niche. J. Mol. Med. (Berl). 2015, 93 (11), 1185–1192. https://doi.org/10.1007/s00109-015-1355-2

      95. Sharma S. K., Chintala N. K., Vadrevu S. K., Patel J., Karbowniczek M., Markiewski M. M. Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J. Immunol. 2015, 194 (11), 5529–5538. https://doi.org/10.4049/jimmunol.1403215

      96. Kai F., Drain A. P., Weaver V. M. The Extracellular Matrix Modulates the Metastatic Journey. Dev. Cell. 2019, 49 (3), 332–346. https://doi.org/10.1016/j.devcel.2019.03.026

      97. Lee Y. C., Kurtova A. V., Xiao J., Nikolos F., Hayashi K., Tramel Z., Jain A., Chen F., Chokshi M., Lee C., Bao G., Zhang X., Shen J., Mo Q., Jung S. Y., Rowley D., Chan K. S. Collagen-rich airway smooth muscle cells are a metastatic niche for tumor colonization in the lung. Nat. Commun. 2019, 10 (1), 2131. https://doi.org/10.1038/s41467-019-09878-4

      98. Zhuyan J., Chen M., Zhu T., Bao X., Zhen T., Xing K., Wang Q., Zhu S. Critical steps to tumor metastasis: alterations of tumor microenvironment and extracellular matrix in the formation of pre-metastatic and metastatic niche. Cell Biosci. 2020, V. 10, P. 89. https://doi.org/10.1186/s13578-020-00453-9

      99. Ren G., Esposito M., Kang Y. Bone metastasis and the metastatic niche. J. Mol. Med. (Berl). 2015, 93 (11), 1203–1212. https://doi.org/10.1007/s00109-015-1329-4

      100. Melzer C., von der Ohe J., Hass R. Breast Carcinoma: From Initial Tumor Cell Detachment to Settlement at Secondary Sites. Biomed. Res. Int. 2017, V. 2017, P. 8534371. https://doi.org/10.1155/2017/8534371

      101. Manjili M. H. Tumor Dormancy and Relapse: From a Natural Byproduct of Evolution to a Disease State. Cancer Res. 2017, 77 (10), 2564–2569. https://doi.org/10.1158/0008-5472.CAN-17-0068

      102. Meléndez-Rodríguez F., Urrutia A. A., Lorendeau D., Rinaldi G., Roche O., Böğürcü-Seidel N., Ortega Muelas M., Mesa-Ciller C., Turiel G., Bouthelier A., Hernansanz-Agustín P., Elorza A., Escasany E., Li Q., Torres-Capelli M., Tello D., Fuertes E., Fraga E., Martínez-Ruiz A., Pérez B., Aragonés J. HIF1α Suppresses Tumor Cell Proliferation through Inhibition of Aspartate Biosynthesis. Cell Rep. 2019, 26 (9), 2257–2265.e4. https://doi.org/10.1016/j.celrep.2019.01.106

      103. Vinay D. S., Ryan E. P., Pawelec G., Talib W. H., Stagg J., Elkord E., Lichtor T., Decker W. K., Whelan R. L., Kumara H., Signori E., Honoki K., Georgakilas A. G., Amin A., Helferich W. G., Boosani C. S., Guha G., Ciriolo M. R., Chen, S, Mohammed S. I., Kwon B. S. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 2015, 35 (l), S185–S198. https://doi.org/10.1016/j.semcancer.2015.03.004

      104. Pein M., Oskarsson T. Microenvironment in metastasis: roadblocks and supportive niches. Am. J. Physiol. Cell Physiol. 2015, 309 (10), C627–C638. https://doi.org/10.1152/ajpcell.00145.2015

      105. Pascual G., Avgustinova A., Mejetta S., Martín M., Castellanos A., Attolini C. S., Berenguer A., Prats N., Toll A., Hueto J. A., Bescós C., Di Croce L., Benitah S. A. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2017, 541 (7635), 41–45. https://doi.org/10.1038/nature20791

      106. Phan T. G., Croucher P. I. The dormant cancer cell life cycle. Nature Rev. Cancer. 2020, 20 (7), 398–411.https://doi.org/10.1038/s41568-020-0263-0

      107. Masucci M. T., Minopoli M., Del Vecchio S., Carriero M. V. The Emerging Role of Neutrophil Extracellular Traps (NETs) in Tumor Progression and Metastasis. Front. Immunol. 2020, V. 11, P. 1749. https://doi.org/10.3389/fimmu.2020.01749

      108. Tayoun T., Faugeroux V., Oulhen M., Aberlenc A., Pawlikowska P., Farace F. CTC-Derived Models: A Window into the Seeding Capacity of Circulating Tumor Cells (CTCs). Cells. 2019, 8 (10), 1145. https://doi.org/10.3390/cells8101145

      109. Kitz J., Lowes L. E., Goodale D., Allan A. L. Circulating Tumor Cell Analysis in Preclinical Mouse Models of Metastasis. Diagnostics (Basel). 2018, 8 (2), 30. https://doi.org/10.3390/diagnostics8020030

      110. Sobral-Filho R. G., DeVorkin L., Macpherson S., Jirasek A., Lum J. J., Brolo A. G. Ex Vivo Detection of Circulating Tumor Cells from Whole Blood by Direct Nanoparticle Visualization. ACS Nano. 2018, 12 (2), 1902–1909. https://doi.org/10.1021/acsnano.7b08813

      111. Qiao Y., Li J., Shi C., Wang W., Qu X., Xiong M., Sun Y., Li D., Zhao X., Zhang D. Prognostic value of circulating tumor cells in the peripheral blood of patients with esophageal squamous cell carcinoma. OncoTargets and Therapy. 2017, V. 10, P. 1363–1373. https://doi.org/10.2147/OTT.S129004

      112. Shen Z., Wu A., Chen X. Current detection technologies for circulating tumor cells. Chemical Society Reviews. 2017, 46 (8), 2038–2056. https://doi.org/10.1039/C6CS00803H

      113. Van der Toom E. E., Verdone J. E., Gorin M. A., Pienta K. J. Technical challenges in the isolation and analysis of circulating tumor cells. Oncotarget. 2016, 7 (38), 62754–62766. https://doi.org/10.18632/oncotarget.11191

      114. Li S., Plouffe B. D., Belov A. M., Ray S., Wang X., Murthy S. K., Karger B. L., Ivanov A. R. An Integrated Platform for Isolation, Processing, and Mass Spectrometry-based Proteomic Profiling of Rare Cells in Whole Blood. MCP. 2015, 14 (6), 1672–1683. https://doi.org/10.1074/mcp.M114.045724

      115. Keller L., Pantel K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat. Rev. Cancer. 2019, 19 (10), 553–567. https://doi.org/10.1038/s41568-019-0180-2

      116. Campos-Carrillo A., Weitzel J. N., Sahoo P., Rockne R., Mokhnatkin J. V., Murtaza M., Gray S. W., Goetz L., Goel A., Schork N., Slavin T. P. Circulating tumor DNA as an early cancer detection tool. Pharmacology & Therapeutics. 2020, V. 207, P. 107458. https://doi.org/10.1016/j.pharmthera.2019.107458

      117. Kelley S. O., Pantel K. A. New Era in Liquid Biopsy: From Genotype to Phenotype. Clin. Chem. 2020, 66 (1), 89–96. https://doi.org/10.1373/clinchem.2019.303339

      118. Ferreira M. M., Ramani V. C., Jeffrey S. S. Circulating tumor cell technologies. Mol. Oncol. 2016, 10 (3), 374–394. https://doi.org/10.1016/j.molonc.2016.01.007

      119. Cho H., Kim J., Song H., Sohn K. Y., Jeon M., Han K. H. Microfluidic technologies for circulating tumor cell isolation. The Analyst. 2018, 143 (13), 2936–2970.https://doi.org/10.1039/C7AN01979C

      120. Sharma S., Zhuang R., Long M., Pavlovic M., Kang Y., Ilyas A., Asghar W. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnology Advances. 2018, 36 (4), 1063–1078. https://doi.org/10.1016/j.biotechadv.2018.03.007

      121. Guerin M. V., Finisguerra V., Van den Eynde B. J., Bercovici N., Trautmann A. Preclinical murine tumor models: a structural and functional perspective. eLife. 2020, V. 9, e50740. https://doi.org/10.7554/eLife.50740

      122. Kerbel R. S. A Decade of Experience in Developing Preclinical Models of Advanced- or Early-Stage Spontaneous Metastasis to Study Antiangiogenic Drugs, Metronomic Chemotherapy, and the Tumor Microenvironment. Cancer J. 2015, 21 (4), 274–283. https://doi.org/10.1097/PPO.0000000000000134

      123. Welch D. R. Technical considerations for studying cancer metastasis in vivo. Clin. Exp. Metastasis. 1997, 15 (3), 272–306. https://doi.org/10.1023/A:1018477516367

      124. Goodale D., Phay C., Postenka C. O., Keeney M., Allan A. L. Characterization of tumor cell dissemination patterns in preclinical models of cancer metastasis using flow cytometry and laser scanning cytometry. Cytometry A. 2009, 75 (4), 344–355.https://doi.org/10.1002/cyto.a.20657

      125. Allan A. L., Vantyghem S. A., Tuck A. B., Chambers A. F., Chin-Yee I. H., Keeney M. Detection and quantification of circulating tumor cells in mouse models of human breast cancer using immunomagnetic enrichment and multiparameter flow cytometry. Cytometry A. 2005, 65 (1), 4–14. https://doi.org/10.1002/cyto.a.20132

      126. Kersten K., de Visser K. E., van Miltenburg M. H., Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 2017, 9 (2), 137–153. https://doi.org/10.15252/emmm.201606857

      127. Olive K. P., Politi K. Translational therapeutics in genetically engineered mouse models of cancer. Cold Spring Harb. Protoc. 2014, 2014 (2), 131–143. https://doi.org/10.1101/pdb.top069997

      128. Hashizume R., Gupta N. Patient-derived Tumor Models for Diffuse Intrinsic Pontine Gliomas. Curr. Neuropharmacol. 2017, 15 (1), 98–103. https://doi.org/10.2174/1570159X14666160523144117

      129. Rebecca V. W., Somasundaram R., Herlyn M. Pre-clinical modeling of cutaneous melanoma. Nat. Commun. 2020, 11 (1), 2858.https://doi.org/10.1038/s41467-020-15546-9

      130. Lee T. W., Lai A., Harms J. K., Singleton D. C., Dickson B. D., Macann A., Hay M. P., Jamieson S. Patient-Derived Xenograft and Organoid Models for Precision Medicine Targeting of the Tumour Microenvironment in Head and Neck Cancer. Cancers. 2020, 12 (12), 3743. https://doi.org/10.3390/cancers12123743

      131. Lallo A., Schenk M. W., Frese K. K., Blackhall F., Dive C. Circulating tumor cells and CDX models as a tool for preclinical drug development. Transl. Lung Cancer Res. 2017, 6 (4), 397–408. https://doi.org/10.21037/tlcr.2017.08.01

      132. Tellez-Gabriel M., Cochonneau D., Cadé M., Jubellin C., Heymann M. F., Heymann D. Circulating Tumor Cell-Derived Pre-Clinical Models for Personalized Medicine. Cancers. 2018, 11 (1), 19. https://doi.org/10.3390/cancers11010019

      133. Alimirzaie S., Bagherzadeh M., Akbari M. R. Liquid biopsy in breast cancer: A comprehensive review. Clin. Genet. 2019, 95 (6), 643–660.  https://doi.org/10.1111/cge.13514tps://doi.org/10.1111/cge.13514

      134. Schwarzenbach H., Hoon D. S., Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev.  Cancer. 2011, 11 (6), 426–437. https://doi.org/10.1038/nrc3066

      135. Schwarzenbach H., Nishida N., Calin G. A., Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Ooncol. 2014, 11 (3), 145–156.https://doi.org/10.1038/nrclinonc.2014.5

      136. Pardini B., Sabo A. A., Birolo G., Calin G. A. Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Cancers. 2019, 11 (8), 1170. https://doi.org/10.3390/cancers11081170

      137. Eslami-S Z., Cortés-Hernández L. E., Cayrefourcq L., Alix-Panabières C. The Different Facets of Liquid Biopsy: A Kaleidoscopic View. Cold Spring Harb. Perspect. Med. 2020, 10 (6), a037333. https://doi.org/10.1101/cshperspect.a037333

      138. Fici P. Cell-Free DNA in the Liquid Biopsy Context: Role and Differences Between ctDNA and CTC Marker in Cancer Management. Methods Mol. Biol. 2019, V. 1909, P. 47–73. https://doi.org/10.1007/978-1-4939-8973-7_4

      139. Maly V., Maly O., Kolostova K., Bobek V. Circulating Tumor Cells in Diagnosis and Treatment of Lung Cancer. In Vivo. 2019, 33 (4), 1027–1037. https://doi.org/10.21873/invivo.11571

      140. Liang D. H., Hall C., Lucci A. Circulating Tumor Cells in Breast Cancer. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer. 2020, V. 215, P. 127–145. https://doi.org/10.1007/978-3-030-26439-0_7

      141. Cortés-Hernández L. E., Eslami-S Z., Alix-Panabières C. Circulating tumor cell as the functional aspect of liquid biopsy to understand the metastatic cascade in solid cancer. Mol. Aspects Med. 2020, V. 72, P. 100816. https://doi.org/10.1016/j.mam.2019.07.008

      142. Mushtaq M., Kovalevska L., Darekar S., Abramsson A., Zetterberg H., Kashuba V., Klein G., Arsenian-Henriksson M., Kashuba E. Cell stemness is maintained upon concurrent expression of RB and the mitochondrial ribosomal protein S18-2. Proc. Natl. Acad. Sci. USA. 2020, 117 (27). https://doi.org/10.1073/pnas.1922535117

      143. Liu T., Xu H., Huang M., Ma W., Saxena D., Lustig R. A., Alonso-Basanta M., Zhang Z., O'Rourke D. M., Zhang L., Gong Y., Kao G. D., Dorsey J. F., Fan Y. Circulating Glioma Cells Exhibit Stem Cell-like Properties. Cancer Res. 2018, 78 (23), 6632–6642. https://doi.org/10.1158/0008-5472.CAN-18-0650

      144. Okabe T., Togo S., Fujimoto Y., Watanabe J., Sumiyoshi I., Orimo A., Takahashi K. Mesenchymal Characteristics and Predictive Biomarkers on Circulating Tumor Cells for Therapeutic Strategy. Cancers. 2020, 12 (12), 3588. https://doi.org/10.3390/cancers12123588

      145. Guan X., Ma F., Li C., Wu S., Hu S., Huang J., Sun X., Wang J., Luo Y., Cai R., Fan Y., Li Q., Chen S., Zhang P., Li Q., Xu B. The prognostic and therapeutic implications of circulating tumor cell phenotype detection based on epithelial-mesenchymal transition markers in the first-line chemotherapy of HER2-negative metastatic breast cancer. Cancer Commun. (Lond). 2019, 39 (1), 1. https://doi.org/10.1186/s40880-018-0346-4

      146. Chen Y., Li S., Li W., Yang R., Zhang X., Ye Y., Yu J., Ye L., Tang W. Circulating tumor cells undergoing EMT are poorly correlated with clinical stages or predictive of recurrence in hepatocellular carcinoma. Sci. Rep. 2019, 9 (1), 7084. https://doi.org/10.1038/s41598-019-43572-1

      147. Sun Y. F., Guo W., Xu Y., Shi Y. H., Gong Z. J., Ji Y., Du M., Zhang X., Hu B., Huang A., Chen G. G., Lai P., Cao Y., Qiu S. J., Zhou J., Yang X. R., Fan J. Circulating Tumor Cells from Different Vascular Sites Exhibit Spatial Heterogeneity in Epithelial and Mesenchymal Composition and Distinct Clinical Significance in Hepatocellular Carcinoma. Clin. Cancer Res. 2018, 24 (3), 547–559. https://doi.org/10.1158/1078-0432.CCR-17-1063

      148. Lin P. P. Aneuploid Circulating Tumor-Derived Endothelial Cell (CTEC): A Novel Versatile Player in Tumor Neovascularization and Cancer Metastasis. Cells. 2020, 9 (6), 1539. https://doi.org/10.3390/cells9061539

      149. Galanzha E. I., Menyaev Y. A., Yadem A. C., Sarimollaoglu M., Juratli M. A., Nedosekin D. A., Foster S. R., Jamshidi-Parsian A., Siegel E. R., Makhoul I., Hutchins L. F., Suen J. Y., Zharov V. P. In vivo liquid biopsy using Cytophone platform for photoacoustic detection of circulating tumor cells in patients with melanoma. Sci. Transl. Med. 2019, 11 (496), eaat5857. https://doi.org/10.1126/scitranslmed.aat5857

      150. Han Y., Liu D., Li L. PD-1/PD-L1 pathway: current researches in cancer. Am. J. Cancer Res. 2020, 10 (3), 727–742.

      151. Zhang W., Huang Q., Xiao W., Zhao Y., Pi J., Xu H., Zhao H., Xu J., Evans C. E., Jin H. Advances in Anti-Tumor Treatments Targeting the CD47/SIRPα Axis. Front. Immunol. 2020, V. 11, P. 18. https://doi.org/10.3389/fimmu.2020.00018

      152. Lian S., Xie R., Ye Y., Lu Y., Cheng Y., Xie X., Li S., Jia L. Dual blockage of both PD-L1 and CD47 enhances immunotherapy against circulating tumor cells. Sci. Rep. 2019, 9 (1), 4532. https://doi.org/10.1038/s41598-019-40241-1

      153. Chen C., Zhao S., Karnad A., Freeman J. W. The biology and role of CD44 in cancer progression: therapeutic implications. J. Hematol. Oncol. 2018, 11 (1), 64. https://doi.org/10.1186/s13045-018-0605-5

      154. Leone K., Poggiana C., Zamarchi R. The Interplay between Circulating Tumor Cells and the Immune System: From Immune Escape to Cancer Immunotherapy. Diagnostics (Basel). 2018, 8 (3), 59. https://doi.org/10.3390/diagnostics8030059

      155. Zhong X., Zhang H., Zhu Y., Liang Y., Yuan Z., Li J., Li J., Li X., Jia Y., He T., Zhu J., Sun Y., Jiang W., Zhang H., Wang C., Ke Z. Circulating tumor cells in cancer patients: developments and clinical applications for immunotherapy. Mol. Cancer. 2020, 19 (1), 15. https://doi.org/10.1186/s12943-020-1141-9


 

Additional menu

Site search

Site navigation

Home Archive 2021 № 4 CIRCULATING TUMOR CELLS: WHERE WE LEFT OFF? I. Kryvoshlyk, L. Skivka

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.