Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2021 № 4 BIOTECHNOLOGICAL RESEARCH IN THE CREATION AND PRODUCTION OF ANTIRABIC VACCINES Krasnopolsky Yu. М., Pylypenko D. М.
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta V. 14, No 4, 2021
Р. 28-37, Bibliography 37, English
Universal Decimal Classification: 615.37: 578.824.11
https://doi.org/10.15407.biotech14.04.028

BIOTECHNOLOGICAL RESEARCH IN THE CREATION
AND PRODUCTION OF ANTIRABIC VACCINES

Krasnopolsky Yu. М., Pylypenko D. М.

National Technical University “Kharkiv Polytechnic Institute”, Ukraine

Rabies is a neurological disease of a viral nature, leading to death. Rabies virus is an RNA virus that invades the central nervous system, leading to neuronal dysfunction. Timely vaccination can prevent the diseases development.

Aim. The article is devoted to immunobiotechnological research aimed at creating antirabic vaccines.

Results. The history of the antirabic vaccines creation from the first inactivated vaccines obtained from nervous tissue to the cultivation of the virus on animal cell cultures is considered. The article presents commercially available anti-rabies vaccines: their composition, the used rabies virus strains, cell cultures, the methods of inactivation and purification. The technology of producing an anti-rabies vaccine based on a Pitman Moore virus strain and a chicken fibroblast cell culture is presented. The advantages of different vaccine types are considered: live attenuated, peptide, liposomal, RNA vaccines, vaccines based on viral vectors, transgenic plants and reverse genetics methods.

Conclusions. The development of biotechnology, immunology and virology makes it possible to improve constantly vaccine preparations, including those against rabies, increasing their effectiveness and safety.

Key words: immunobiotechnology; viral vaccines; antirabic vaccine; RNA virus; rabies virus.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021

  • References
    • 1. Antonova L. O., Makovska I. F., Krupinina Т. M. The history of rabies control in Ukraine from the time of Pasteur to the present day. Actual Infectology. 2021, 9 (1), 6–16. (In Russian). https://doi.org/10.22141/2312-413X.9.1.2021.228821

      2. Zhu S., Cuo C. Rabies control and treanment: from prophylaxis strategies with curative potencial. Viruses. 2016, 8 (11), 279–290. https://doi.org/10.3390/v8110279

      3. Schnell M. J., McGettigan J. P., Wirblich C., Papaneri A. The cell biology of rabies virus: using stealth to reach the brain. Nat. Rev. Microbiol. 2010, 8 (1), 51–61.https://doi.org/10.1038/nrmicro2260

      4. Wiktor T. J., Gyorgy E., Schlumberger D., Sokol F., Koprowski H. Antigenic properties of rabies virus components. J. Immunol. 1973, V. 110, P. 269–276.

      5. Fooks A. R., Cliquet F., Finke S., Freuling C., Hemachudha T., Mani R. S., Müller T., Nadin-Davis S., Picard-Meyer E., Wilde H., Banyard A. C. Rabies. Nat. Rev. Dis. Primers. 2017, V. 3, P. 17091. https://doi.org/10.1038/nrdp.2017.91

      6. Fuenzalida E., Palacios R., Borgano J. M. Antirabies antibody response in man to vaccine made from infected sucking-mouse brains. Bull. World Health Organ. 1964, V. 30, P. 431–436.

      7. Holbets I. I., Krasnopolskyi Yu. M., Orlova H. L. Vaccination of the anti-rabies vaccine in the warehouse and the role of lipids in the reactogenicity of the drug. Pharm. J. 1983, V. 2, P. 51–53. (In Ukrainian).

      8. Krasnopolskiy Yu. M., Golbets I. I., Sennikov G. A., Shvets V. I. Immunochemistry of lipids. Chem. Pharm. J. 1981, 15 (7), 13–25. (In Russian). https://doi.org/10.1007/BF00758528

      9. Krasnopolskiy Yu. M., Shvets V. I. Investigation of the effect of certain gangliosides on the resistance of mice to rabid virus. Bull. Exp. Biol. Med. 1987, CIV (12), 698–699. (In Russian).

      10. Zhu S., Li H., Wang C., Luo F., Guo C. Reverse genetics of rabies virus. New strateges to attenuate virus virulence for vaccine development. J. Neurovirol. 2015, V. 21, P. 335–345. https://doi.org/10.1007/s13365-015-0350-2

      11. Plotkin S. A. Vaccine production in human diploid cell strains. Am. J. Epidemiolog. 1971, 94 (3), 303–306. https://doi.org/10.1093/oxfordjournals.aje.a121323

      12. Giesen V., Gniel D., Malerczyk C. 30 years of rabies vaccination with Rabipur: a summary of clinical data and global experience. Expert Rev. Vaccines. 2015, 14 (3), 351–367. https://doi.org/10.1586/14760584.2015.1011134

      13. Wictor T. J., Koprowwski H. Succesful immunization of primates with rabies vaccine preparazed in human diploid cell strain Wi38. Proc. Soc. Exp. Biol. Med. 1965, V. 118, P. 1069–1073. https://doi.org/10.3181/00379727-118-30048

      14. Plotkin S. A., Koprowski H. Rabies vaccines. In Plotkin S. A., Orenstein W. A., Offit P. A. (Eds.). Vaccine. Saunders / Elsevier. 2008, P. 687–714. https://doi.org/10.1016/B978-1-4160-3611-1.50031-3

      15. Pharmacopoeial monograph 3.3.1.0025.15 Vaccine antirabies culture concentrated purified inactivated. Pharmacopoeia of the Russian Federation. (In Russian). Available at: https://pharmacopoeia.ru/fs-3-3-1-0025-15-vaktsina-antirabicheskaya-kulturalnaya-kontsentrirovannaya-ochishhennaya-inaktivirovannaya/

      16. WHO Expert Committee on Rabies. World Health Organ. Series Tech. Rep. Geneva. 1986, V. 709, P. 13–22. (In Russian).

      17. WHO Recommendations for inactivated rabies vaccine for human use produced in cell substrates and embryonated eggs. Annex 2. World Health Organ. Tech. Rep. Ser. 2007, V. 941, P. 83–132.

      18. WHO Expert Consutation on rabies. World Health Organ. Tech. Rep. Ser. 2018, V. 931, P. 1–88.

      19. Abramova E. G., Nikiforov A. K., Movsesyants A. A., Zhulidov I. M. Rabies and rabies immunobiological preparations: vaccinations pasteur to the contemporary biotechnology. J. Microbiol. Epidemiol. Immunobiol. 2019, V. 5, P. 83–94. (In Russian). https://doi.org/10.36233/0372-9311-2019-5-83-94

      20. Patel P. M., Patel P. R. Adaptation of Pitman Moore strain of rabies virus to primery chick embryo fibroblast cell cultures. United States. Patent US 8,361,776 B2. Jan. 29, 2008.

      21. Zhang Y. N., Chen C., Deng C. L., Zhang C.-G., Li N., Wange Z., Zhao L., Zhang B. A novel rabies vaccine based in infectious propagating particles derived from hybrid VEEV-Rabies replicon. EBioMedicine. 2019, V. 56, P. 102819. https://doi.org/10.1016/j.ebiom.2020.102819

      22. Klepfer S. R., Debouck C., Uffelman J., Jacobs P., Bollen A., Jones E. V. Characterization of rabies glycoprotein expressed in yeust. Arch. Virol. 1993, 128 (2), 269–286.https://doi.org/10.1007/BF01309439

      23. Ashzef S., Singh P. K., Yadav D. K. High level expression of surface glucoprotein of rabies virus tobacco leaves and its immunoprotective activity in mice. J. Biotechnol. 2005, V. 119, P. 1–14. https://doi.org/10.1016/j.jbiotec.2005.06.009

      24. Loza-Rubio E., Rojas E., Gomeslet H., Olivera M. T. J., Gómez-Lim M. A. Development of an edible rabies vaccine in miize using the vinukovo strain. Dev. Biol. 2008, V. 131, P. 477–482.

      25. Krasnopolskiy Yu. M., Borshchevskaya M. I. Pharmaceutical biotechnology: Technology for the production of immunobiological drugs. Kharkov: NTU «KhPI». 2009, 351 p. (In Russian).

      26. Miao L., Yang V., Yan M., Li Y., Zhao J., Guo J., Zheng D. Enhanced Immune response to Rabies viruses by the use of a liposome adjuvantin vaccines. Viral Immunol. 2017, 30 (10), 727–733. https://doi.org/10.1089/vim.2017.0093

      27. Tam Y., Hope M. J., Weissman D., Pardi N. Nucleside – modified RNA for inducing an adaptive immune response United States. Patent WO 2016/176330 A1. Non. 3, 2018.

      28. Jackson L. A., Anderson E. J., Rouphael N. G., Roberts P. C., Makhene M., Coler R. N., McCullough M. P., Chappell J. D., Denison M. R., Stevens L. J., Pruijssers A. J., McDermott A., Flach B., Doria-Rose N. A., Corbett K. S., Morabito K. M., O'Dell S., Schmidt S. D., Swanson P. A. 2nd, Padilla M., Mascola J. R., Neuzil K. M., Bennett H., Sun W., Peters E., Makowski M., Albert J., Cross K., Buchanan W., Pikaart-Tautges R., Ledgerwood J. E., Graham B. S., Beigel J. H.; mRNA-1273 Study Group. An mRNA Vaccine against SARS-CoV-2 – Preliminary Report. N. Engl. J. Med. 2020, 383 (20), 1920–1931. https://doi.org/10.1056/NEJMoa2022483

      29. Hassett K. J., Benenato K. E., Jacquinet E., Lee A., Woods A., Yuzhakov O., Himansu S., Deterling J., Geilich B. M., Ketova T., Mihai C., Lynn A., McFadyen I., Moore M. J., Senn J. J., Stanton M. G., Almarsson Ö., Ciaramella G., Brito L. A. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids. 2019, V. 15, P. 1–11. https://doi.org/10.1016/j.omtn.2019.01.013

      30. Zhu S., Cuo C. Rabies control and treanment: from prophylaxis strategies with curative potencial. Viruses. 2016, 8 (11), 279–290. https://doi.org/10.3390/v8110279

      31. Zhu S., Li H., Wang C., Luo F., Guo C. Reverse genetics of rabies virus. New strateges to attenuate virus virulence for vaccine development. J. Neurovirol. 2015, V. 21, P. 335–345. https://doi.org/10.1007/s13365-015-0350-2

      32. Garagulya G. I., Matkovska S. G., Garkavaya V. V. Antirbic vaccines: retrospective review. Probl. Zooengineering Vet. Med. 2015, 30 (22), 149–153. (In Russian).

      33. Takayama-Ito M., Inoue K., Shoji Y., Inoue S., Iijima T., Sakai T., Kurane I., Morimoto K. A highly attenuated rabies virus HEP-Flury strain reverts to virulent by single amino acid substitution to arginine at position 333 in glycoprotein. Virus Res. 2006, 119 (2), 208–215. https://doi.org/10.1016/j.virusres.2006.01.014

      34. Dietzschold B., Wang H. H., Rupprecht C. E., Celis E., Tollis M., Ertl H., Heber-Katz E., Koprowski H. Induction of protective immunity against rabies by immunization with a rabies virus ribonucleoprotein. PNAS. 1987, 84 (24), 9165–9169. https://doi.org/10.1073/pnas.84.24.9165

      35. Sedova E. S., Shmarov M. M. New recombinant rabies vaccines. BIOpreparations. Prevention, Diagnosis, Treatment. 2016, 16 (4), 219–228. (In Russian).

      36. Shishkov A. V., Lozovoy D. A., Borisov A. V., Mikhalishin D. V. Testing of Ferarabivac anti-rabies live vaccine for wild carnivores for its immunogenicity and protectivity. Veterinary Sci. Today. 2020, 1 (32), 31–37. (In Russian). https://doi.org/10.29326/2304-196X-2020-1-32-31-37

      37. Ignatyev G. M., Oksanich A. S., Antonova L. P., Samartseva T. G., Mosolova S. V., Mefed K. M., Gmyl L. V., Netesova N. A. Molecular Genetic Testing of Stability and Identification of Vnukovo-32 Strain Used for Production of the Cultural Concentrated Purified Inactivated Dry Rabies Vaccine. BIOpreparations. Prevention, Diagnosis, Treatment. 2020, 20 (2), 107–115. (In Russian). https://doi.org/10.30895/2221-996X-2020-20-2-107-115


 

Additional menu

Site search

Site navigation

Home Archive 2021 № 4 BIOTECHNOLOGICAL RESEARCH IN THE CREATION AND PRODUCTION OF ANTIRABIC VACCINES Krasnopolsky Yu. М., Pylypenko D. М.

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.