Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2021 № 4 MATHEMATICAL MODEL FOR THE INVESTIGATION OF HYPOXIC STATES IN THE HEART MUSCLE AT VIRAL DAMAGE N. I. Aralova, O. M. Klyuchko, V. I. Mashkin, I. V. Mashkina, Paweł Radziejowski4, Maria Radziejowska
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta V. 14, No 4, 2021
Р. 38-52, Bibliography 84, English
Universal Decimal Classification: 519.8.812.007
https://doi.org/10.15407.biotech14.04.038

MATHEMATICAL MODEL FOR THE INVESTIGATION OF HYPOXIC STATES IN THE HEART MUSCLE AT VIRAL DAMAGE

N. I. Aralova1, O. M. Klyuchko2, V. I. Mashkin1, I. V. Mashkina3,
Paweł Radziejowski4, Maria Radziejowska
4

1V. M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kyiv
2National Aviation University, Educational and Research Institute of Air Navigation, Kyiv, Ukraine
3Borys Grinchenko Kyiv University, Ukraine
4Czestochowa University of Technology, Poland

The main complications of organism damaged by SARS-CoV-2 virus are various cardiovascular system lesions. As a result, the secondary tissue hypoxia is developed and it is relevant to search the means for hypoxic state alleviation. Mathematical modeling of this process, followed by the imitation of hypoxic states development, and subsequent correction of hypoxia at this model may be one of the directions for investigations.

Aim. The purpose of this study was to construct mathematical models of functional respiratory and blood circulatory systems to simulate the partial occlusion of blood vessels during viral infection lesions and pharmacological correction of resulting hypoxic state.

Methods. Methods of mathematical modeling and dynamic programming were used. Transport and mass exchange of respiratory gases in organism, partial occlusion of blood vessels and influence of antihypoxant were described by the systems of ordinary nonlinear differential equations.

Results. Mathematical model of functional respiratory system was developed to simulate pharmacological correction of hypoxic states caused by the complications in courses of viral infection lesions. The model was based on the theory of functional systems by P. K. Anokhin and the assumption about the main function of respiratory system. The interactions and interrelations of individual functional systems in organism were assumed. Constituent parts of our model were the models of transport and mass exchange of respiratory gases in organism, selforganization of respiratory and blood circulatory systems, partial occlusion of blood vessels and the transport of pharmacological substance.

Conclusions. The series of computational experiments for averaged person organism demonstrated the possibility of tissue hypoxia compensation using pharmacological substance with vasodilating effect, and in the case of individual data array, it may be useful for the development of strategy and tactics for individual patient medical treatment.

Key words: functional respiratory system; transport and mass exchange of respiratory gases; hypoxic state; partial occlusion of blood vessels.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021

  • References
    • 1. Komisarenko S. V. World Coronavirus Crisis. K. Publishing House LAT&K. 2020, 120 p.

      2. Avula A., Nalleballe K., Narula N., Sapozhnikov S., Dandu V., Toom S., Glaser A., Elsayegh D. COVID-19 presenting as stroke. Brain, Behavior, and Immunity. 2020, V. 87, P. 115–119. https://doi.org/10.1016/j.bbi.2020.04.077

      3. Leisman D. E., Deutschman C. S., Legrand M. Facing COVID-19 in the ICU: vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Med. 2020, 46 (6), 1105–1108. https://doi.org/10.1007/s00134-020-06059-6

      4. Bazdyrev E. D. Coronavirus disease: global problem of the 21 st century. Comlex issues of Cardiovascular Diseases. 2020, 9 (2), 6–16. https://doi.org/10.17802/2306-1278-2020-9-2-6-16 (In Russian). https://doi.org/10.17802/2306-1278-2020-9-2-6-16

      5. Longquan Li, Tian Huang, Yongqing Wang, Zhengping Wang, Yuan Liang, Taobi Huang, Huiyun Zhang, Weiming Sun, Yuping Wang. COVID-19 patients' clinical characteristics, discharge rate, and fatality rate of metaanalysis, Volume 92, Issue 6. Special Issue on New co ronavirus (2019-nCoV or SARS-CoV-2) and the outbreak of the respiratory illness (COVID-19): Part-III, June 2020 Pages 577–583. https://doi.org/10.1002/jmv.25757

      6. Chaolin Huang, Yeming Wang, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu, Li Chang, Guohui Fan, Jiuyang Xu, Xiaoying Gu, Zhenshun Cheng, Ting Yu, Jiaan Xia, Yuan Wei, Wenjuan Wu, Xuelei Xie, Wen Yin, Hui Li, Min Liu, Yan Xiao, Hong Gao, Li Guo, Jungang Xie, Guangfa Wang, Rongmeng Jiang, Zhancheng Gao, Qi Jin, Jianwei Wang, Bin Cao. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China Lancet. 2020, 395 (10223), 497–506. https://doi.org/10.1016/SO140-6736(20)30183-5. Lancet. 2020, 395 (10223), 496. https://doi.org/10.1016/S0140-6736(20)30252-X

      7. Dawei Wang, Bo Hu, Chang Hu, Fangfang Zhu, Xing Liu, Jing Zhang, Binbin Wang, Hui Xiang, Zhenshun Cheng, Yong Xiong, Yan Zhao, Yirong Li, Xinghuan Wang, Zhiyong Peng. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan. China. JAMA. 2020, 323 (11), 1061–1069. https://doi.org/10.1001/jama.2020.1585

      8. Fei Zhou , Ting Yu, Ronghui D, Guohui Fan, Ying Liu, Zhibo Liu, Jie Xiang, Yeming Wang, Bin Song, Xiaoying Gu,  Lulu Guan,  Yuan Wei, Hui Li Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study The Lancet, 395(10229), 1054‒1062 ‒ March 2020. https://doi.org/10.1016/S0140-6736(20)30566-3

      9. Driggin E., Mahesh M. V., Bikdeli B., Chuich T., Laracy J., Biondi-Zoccai G., Brown T. S., Der Nigoghossian C., Zidar D. A., Haythe J., Brodie D., Beckman J. A., Kirtane A. J., Stone G. W., Krumholz H. M., Parikh S. A. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J. Am. Coll. Cardiol. 2020, 75 (18), 2352–2371. https://doi.org/10.1016/j.jacc.2020.03.031

      10. Larina V. N., Golovko M. G., Larin V. G. Possible effects of coronavurus infection (COVID-19) on the cardiovascular system ". Bulletin of RSMU. 2020, V. 2, P. 5–12. (In Russian).https://doi.org/10.24075/brsmu.2020.020

      11. Oudit Y., Kassiri Z., Jiang C., Liu P. P., Poutanen S. M., Penninger J. M., Butany J. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients. Eur. J. Clin. Invest. 2009, 39 (7), 618–625. https://doi.org/10.1111/j.1365-2362.2009.02153.x

      12. Zhe Xu, Lei Shi, Yijin Wang, Jiyuan Zhang, Lei Huang, Chao Zhang, Shuhong Liu, Peng Zhao, Hongxia Liu, Li Zhu, Yanhong Tai, Changqing Bai, Tingting Gao, Jinwen Song, Peng Xia, Jinghui Dong, Jingmin Zhao, Fu-Sheng Wang. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8 (4), 420–422. https://doi.org/10.1016/S2213-2600(20)30076-X

      13. Menachery V. D., Yount B. L., Debbink Jr.K., Agnihothram S., Gralinski L. E., Plante J. A., Graham R. L., Scobe T., Ge Xing-Yi, Donaldson E. F., Randell S. H., Lanzavecchia A., Marasco W. A., Shi Z-Li, Baric R. S. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nature Med. 2015, V. 21, P. 1508–1513. https://doi.org/10.1038/nm.3985

      14. Yushun Wan, Jian Shang, Graham R., Baric R. S., Fang Li. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol. 2020, 94 (7), 1–9. https://doi.org/10.1128/JVI.00127-20

      15. Hong Peng Jia, Dwight C. Look, Lei Shi, Hickey M., Pewe L., Netland J., Farzan M., Wohlford-Lenane C., Perlman S., McCray P. B. Jr. ACE2 Receptor Expression and Severe Acute Respiratory Syndrome Coronavirus Infection Depend on Differentiation of Human Airway Epithelia. J. Virol. 2005, 79 (23), 14614–14621. https://doi.org/10.1128/JVI.79.23.14614-14621.2005

      16. Sodhi C. P., Wohlford-Lenane C., Yamaguchi Y., Prindle T., Fulton W. B., Wang S., McCray P. B. Jr., Chappell M., Hackam D. J., Jia H. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am. J. Physiol. Lung Cell Mol. Physiol. 2018, 314 (1), 17–31. https://doi.org/10.1152/ajplung.00498.2016

      17. Nanshan Chen, Min Zhou, Xuan Dong, Jieming Qu, Fengyun Gong, Yang Han, Yang Qiu, Jingli Wang, Ying Liu, Yuan Wei, Jia  An Xia, Ting Yu, Xinxin Zhang, Li Zhang. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020, 395 (10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7

      18. Short K. R., Kroeze E. J. B. V., Fouchier R. A. M, Kuiken T. Pathogenesis of influenza-induced acute respiratory distress syndrome Lancet Infect. Dis. 2014, 14 (1), 57–69. https://doi.org/10.1016/S1473-3099(13)70286-X

      19. Wei-jie Guan, Zheng-yi Ni, Yu Hu, Wen-hua Liang, Chun-quan Ou, Jian-xing He, Lei Liu, Hong Shan, Chun-liang Lei, David S. C. Hui, Bin Du, Lan-juan Li, Guang Zeng, Kwok-Yung Yuen, Ru-chong Chen, Chun-li Tang, Tao Wang, Ping-yan Chen, Jie Xiang, Shi-yue Li, Jin-lin Wang, Zi-jing Liang, Yi-xiang Peng, Li Wei, Yong Liu, Ya-hua Hu, Peng Peng, Jian-ming Wang, Ji-yang Liu, Zhong Chen, Gang Li, Zhi-jian Zheng, Shao-qin Qiu, Jie Luo, Chang-jiang Ye, Shao-yong Zhu, Nan-shan Zhong. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl. J. Med. 2020, V. 382, P. 1708–1720. https://doi.org/10.1056/NEJMoa2002032

      20. Xiaobo Yang, Yuan Yu, Jiqian Xu, Huaqing Shu, Jia'an Xia, Hong Liu, Yongran Wu, Lu Zhang, Zhui Yu, Minghao Fang, Ting Yu, Yaxin Wang, Shangwen Pan, Xiaojing Zou, Shiying Yuan, You Shang. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 2020. 2600 (20), 1–7. https://doi.org/10.1016/S2213-2600(20)30079-5

      21. Kopytsy M., Rodionova I., Tytarenko N., Hilova Y., Kutya I., Kobets A. Features of the cardiovascular system lesion in patients with COVID-19. ScienceRise: Med. Sci. 2020, 3 (36), 4–12. (In Russian). https://doi.org/10.15587/2519-4798.2020.204011

      22. Yu C.-M., Wong R. S.-M., Wu E. B., Kong S.-L., Wong J., Yip G. W.-K., Soo Y. O. Y., Chiu M. L. S., Chan Y.-S., Hui D., Lee N., Wu A., Leung C.-B., Sung J. J.-Y. Cardiovascular complications of severe acute respiratory syndrome. Postgrad. Med. J. 2006, V. 82, P. 140–144.https://doi.org/10.1136/pgmj.2005.037515

      23. Li S. S., Cheng C., Fu C., Chan Y., Lee M., Chan J. W., Yiu S. Left Ventricular Performance in Patients With Severe Acute Respiratory Syndrome. Circulation. 2003, V. 108, P. 1798–1803. https://doi.org/10.1161/01.CIR.0000094737.21775.32

      24. Alhogbani T. Acute myocarditis associated with novel Middle East respiratory syndrome coronavirus. Ann. Saudi Med. 2016, 36 (1), 78–80. https://doi.org/10.5144/0256-4947.2016.78

      25. Mikhaylovskaya T. V., Yakovleva N. D., Safronov M. A., Kharlamova Ya. L. Porenyial. Effects of COVID-19 on the Cardiovascular System. Physical and Reabilitation Medicine, Medical Reabilitation. 2020, No 2, P. 133–139.  (In Russian).. https://doi.org/10.36425/rehab34080

      26. Madjid M., Safavi-Naein Payam., Solomon S. D., Vardeny O. Potential Effects of Coronaviruses on the Cardiovascular System. A Review. JAMA Cardiol. 2020, 5 (7), 831–840. https://doi.org/10.1001/jamacardio.2020.1286

      27. Peiris J. S. M., Chu C. M., Cheng V. C. C., Chan K. S., Hung I. F. N., Poon L. L. M., Law K. I., Tang B. S. F., Hon T. Y. W., Chan C. S., Chan K. H., Ng J. S. C., Zheng B. J., Ng W. L., Lai R. W. M., Guan Y., Yuen K. Y. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003, 361 (9371), 1767‒1772. https://doi.org/10.1016/S0140-6736(03)13412-5

      28. Pek Yoon Chong, Paul Chui, Ai E. Ling, Teri J. Franks, Dessmon Y. H. Tai, Yee Sin Leo, Gregory J. L. Kaw, Gervais Wansaicheong, Kwai Peng Chan, Lynette Lin Ean Oon, Eng Swee Teo, Kong Bing Tan, Noriko Nakajima, Tetsutaro Sata, William D. Travis. Analysis of deaths during the severe acute respiratory syndrome (SARS) epidemic in Singapore: challenges in determining a SARS diagnosis. Arch. Pathol. Lab. Med. 2004, 128 (2), 195–204. https://doi.org/10.5858/2004-128-195-AODDTS

      29. Zhe Xu, Lei Shi, Yijin Wang, Jiyuan Zhang, Lei Huang, Chao Zhang, Shuhong Liu, Peng Zhao, Hongxia Liu, Li Zhu, Yanhong Tai, Changqing Bai, Tingting Gao, Jinwen Song, Peng Xia, Jinghui Dong, Jingmin Zhao, Fu-Sheng Wang. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8 (4), 420–422. https://doi.org/10.1016/S2213-2600(20)30076-X

      30. Shaobo Shi, Mu Qin, Bo Shen, Yuli Cai, Tao Liu, Fan Yang, Wei Gong, Xu Liu, Jinjun Liang, Qinyan Zhao, He Huang, Bo Yang, Congxin Huang. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5 (7), 802–810. https://doi.org/10.1001/jamacardio.2020.0950

      31. Kanorskii S. G. COVID-19 and the heart: direct and indirect impact. Kubanskiy Nauchniy Meditsinskiy Vestnik. 2021, 28 (1), 16–31. (In Russian). https://doi.org/10.25207/1608-6228-2021-28-1-16-31

      32. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T. S., Herrler G., Wu N-H., Nitsche A., Müller M. A., Drosten C., Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020, 181 (2), 271–280. https://doi.org/10.1016/j.cell.2020.02.052

      33. Li M. Y., Li L., Zhang Y., Wang X. S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty. 2020, V. 9, P. 45.https://doi.org/10.1186/s40249-020-00662-x

      34. Forrester S. J., Booz G. W., Sigmund C. D., Coffman T. M., Kawai T., Rizzo V., Scalia R., Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol. Rev. 2018, 98 (3), 1627–1738. https://doi.org/10.1152/physrev.00038.2017

      35. Verdecchia P., Cavallini C., Spanevello A., Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med. 2020, V. 76, P. 14–20. https://doi.org/10.1016/j.ejim.2020.04.037

      36. South A. M., Diz D. I., Chappell M. C. COVID-19, ACE2, and the cardiovascular consequences. Heart and Circulatory Physiology.
      https://doi.org/10.1152/ajpheart.00217.2020

      37. Jiu Chang Zhong, Ratnadeep Basu, Danny Guo, Fung L. Chow, Simon Byrns, Manfred Schuster, Hans Loibner, Xiu-hua Wang, Josef M. Penninger, Zamaneh Kassiri, Gavin Y. Oudit. Angiotensin-Converting Enzyme 2 Suppresses Pathological Hypertrophy, Myocardial Fibrosis, and Cardiac Dysfunction 2010. Circulation. 2010, 122 (7), 717–728  https://doi.org/10.1161/CIRCULATIONAHA.110.955369

      38. Tanwar V., Adelstein J. M., Wold L. E. Double trouble: combined cardiovascular effects of particulate matter exposure and coronavirus disease 2019. Cardiovasc. Res. 2021, 117 (1), 85–95. https://doi.org/10.1093/cvr/cvaa293

      39. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the "Cytokine Storm" in COVID-19. J. Infect. 2020, 80 (6), 607–613. https://doi.org/10.1016/j.jinf.2020.03.037

      40. Guang Chen, Di Wu, Wei Guo, Yong Cao, Da Huang, Hongwu Wang, Tao Wang, Xiaoyun Zhang, Huilong Chen, Haijing Yu, Xiaoping Zhang, Minxia Zhang, Shiji Wu, Jianxin Song, Tao Chen, Meifang Han, Shusheng Li, Xiaoping Luo, Jianping Zhao, Qin Ning. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 2020, 130 (5), 2620–2629. https://doi.org/10.1172/JCI137244

      41. Mehta P., McAuley D. F., Brown M., Sanchez E., Tattersall R. S., Manson J. J. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020, 395 (10229), 1033–1034. https://doi.org/10.1016/S0140-6736(20)30628-0

      42. Siddiqi H. K., Mehra M. R. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J. Heart Lung Transplant. 2020, 39 (5), 405–407. https://doi.org/10.1016/j.healun.2020.03.012

      43. Inciardi R. M., Lupi L., Zaccone G., Italia L., Raffo M., Tomasoni D., Cani D. S., Cerini M., Farina D., Gavazzi E., Maroldi R., Adamo M., Ammirati E., Sinagra G., Lombardi C. M., Metra M. Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5 (7), 819–824. https://doi.org/10.1001/jamacardio.2020.1096 https://doi.org/10.1001/jamacardio.2020.1096

      44. Zeng J. H., Liu Y. X., Yuan J., Wang F. X., Wu W. B., Li J. X., Wang L. F., Gao H., Wang Y., Dong C. F., Li Y. J., Xie X. J., Feng C., Liu L. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection. 2020, 48 (5), 773–777. https://doi.org/10.1007/s15010-020-01424-5

      45. Liu K., Fang Y. Y., Deng Y., Liu W., Wang M. F., Ma J. P., Xiao W., Wang Y. N., Zhong M. H., Li C. H., Li G. C., Liu H. G. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin. Med. J. (Engl.). 2020, 133 (9), 1025–1031. https://doi.org/10.1097/CM9.0000000000000744

      46. Tavazzi G., Pellegrini C., Maurelli M., Belliato M., Sciutti F., Bottazz A., Sepe P. A., Resasco T., Camporotondo R., Bruno R., Baldanti F., Paolucci S., Pelenghi S., Iotti G. A., Mojoli F., Arbustini E. Myocardial localization of coronavirus in COVID‐19 cardiogenic shock. Eur. J. Heart Failure. 2020, 5 (22), 911–915. https://doi.org/10.1002/ejhf.1828

      47. Fox S. E., Li G., Akmatbekov A., Harbert J. L., Lameira F. S., Brown J. Q., Heide R. S. V. Unexpected Features of Cardiac Pathology in COVID-19 Infection. Circulation. 2020, V. 142, P. 1123–1125 https://doi.org/10.1161/CIRCULATIONAHA.120.049465

      48. Kogan E. A., Berezovskiy Yu. S., Blagova O. V., Kukleva A. D., Bogacheva G. A., Kurilina E. V., Kalinin D. V., Bagdasaryan T. R., Semeyonova L. A., Gretsov E. M., Ergeshov A. E., Fomin V. V. Miocarditis in Patients with COVID-19 Confirmed by Immunohistochemical. Kardiologiya. 2020, 60 (7), 4–10. (In Russian). https://doi.org/10.18087/cardio.2020.7.n1209

      49. Mehra M. R., Ruschitzka F. COVID-19 Illness and Heart Failure: A Missing Link? JACC Heart Fail. 2020, 8 (6), 512–514. https://doi.org/10.1016/j.jchf.2020.03.004

      50. Aykut Cilli, Ozlem Cakin, Emine Aksoy, Feyza Kargin, Nalan Adiguzel, Zuhal Karakurt, Begum Ergan, Seda Mersin, Selen Bozkurt, Fatma Ciftci, Melike Cengiz. Acute cardiac events in severe community‐acquired pneumonia: A multicenter study. A Clin. Respir. J. 2018, 28 (7), 2212–2219. https://doi.org/10.1111/crj.12791

      51. Cowan L. T., Lutsey P. L., Pankow J. S., Matsushita K., Ishigami J., Lakshminarayan K. Inpatient and Outpatient Infection as a Trigger of Cardiovascular Disease: The ARIC Study. J. Amer. Heart Assoc. 2018, V. 7, P. e 009683. https://doi.org/10.1161/JAHA.118.009683

      52. Babapoor-Farrokhran S., Gill D., Walker J., Rasekhi R. T., Bozorgnia B., Amanullah A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020, V. 253, P. 117723. https://doi.org/10.1161/JAHA.118.009683

      53. Florea V. G., Cohn J. N The Autonomic Nervous System and Heart Failure. Circulation Res. 2014, V. 114, P. 1815–182  https://doi.org/10.1161/CIRCRESAHA.114.302589

      54. Xiong T. Y., Redwood S., Prendergast B., Chen M. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur. Heart J. 2020, 41 (19), 1798–1800. https://doi.org/10.1093/eurheartj/ehaa231

      55. Bansal M. Cardiovascular disease and COVID-19. Diabetes & Metabolic Syndrome: Clin. Res. Rev. 2021, 15 (1), 477. https://doi.org/10.1016/j.dsx.2020.03.013

      56. Thygesen K., Alpert J. S., Jaffe A. S., Chaitman B. R., Bax J. J., Morrow D. A., White H. D. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). J. Am. Coll. Cardiol. 2018, 72 (18), 2231–2264. https://doi.org/10.1016/j.jacc.2018.08.1038

      57. Chapman A. R., Shah A. S. V., Lee K. K., Anand A., Francis O., Adamson P., McAllister D. A., Strachan F. E., Newby D. E., Mills N. L. Long-Term Outcomes in Patients With Type 2 Myocardial Infarction and Myocardial Injury. Circulation. 2018, 137 (12), 1236–1245.https://doi.org/10.1161/CIRCULATIONAHA.117.031806

      58. Polonskaya Y. V., Kashtanova E. V., Stakhneva E. M., Sadowski E. V., Ragino Yu. I. COVID-19 and cardiovascular diseases. Ateroscleroz. 2020, 16 (2), 73–79. (In Russian).https://doi.org/10.15372/ATER20200207

      59. Arentz M., Yim E., Klaff Li., Lokhandwala S., Riedo F. X., Chong M., Lee M. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020, 323 (16), 1612–1614. https://doi.org/10.1001/jama.2020.4326

      60. Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H., Wu Y., Zhang L., Yu Z., Fang M., Yu T., Wang Y., Pan S., Zou X., Yuan S., Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8 (5), 475–481. https://doi.org/10.1016/S2213-2600(20)30079-5

      61. Liu K., Fang Y. Y., Deng Y., Liu W., Wang M. F., Ma J. P., Xiao W., Wang Y. N., Zhong M. H., Li C. H., Li G. C., Liu H. G. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin. Med. J. (Engl.). 2020, 133 (9), 1025–1031. https://doi.org/10.1097/CM9.0000000000000744

      62. Zhang J. J., Dong X., Cao Y. Y., Yuan Y. D., Yang Y. B., Yan Y. Q., Akdis C. A., Gao Y. D. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020, 75 (7), 1730–1741. https://doi.org/10.1111/all.14238

      63. Pingzheng Mo, Yuanyuan Xing, Yu Xiao, Liping Deng, Qiu Zhao, Hongling Wang, Yong Xiong, Zhenshun Cheng, Shicheng Gao, Ke Liang, Mingqi Luo, Tielong Chen, Shihui Song, Zhiyong Ma, Xiaoping Chen, Ruiying Zheng, Qian Cao, Fan Wang, Yongxi Zhang. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin. Infect. Dis. ciaa270. 2020. https://doi.org/10.1093/cid/ciaa270

      64. Guo T., Fan Y., Chen M., Wu X., Zhang L., He T., Wang H., Wan J., Wang X., Lu Z. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5 (7), 811–818. https://doi.org/10.1001/jamacardio.2020.1017

      65. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020, 395 (10223), 497–506.https://doi.org/10.1016/S0140-6736(20)30183-5

      66. Tao Chen, Di Wu, Huilong Chen, Weiming Yan, Danlei Yang, Guang Chen, Ke Ma, Dong Xu, Haijing Yu, Hongwu Wang, Tao Wang, Wei Guo, Jia Chen, Chen Ding, Xiaoping Zhang, Jiaquan Huang, Meifang Han, Shusheng Li, Xiaoping Luo, Jianping Zhao, Qin Ning. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020, V. 368, P. m1295. https://doi.org/10.1136/bmj.m1295

      67. Wang L., He W., Yu X., Hu D., Bao M., Liu H., Zhou J., Jiang H. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J. Infect. 2020, 80 (6), 639–645. https://doi.org/10.1016/j.jinf.2020.03.019

      68. Lian J., Jin X., Hao S., Cai H., Zhang S., Zheng L., Jia H., Hu J., Gao J., Zhang Y., Zhang X., Yu G., Wang X., Gu J., Ye C., Jin C., Lu Y., Yu X., Yu X., Ren Y., Qiu ., Li L., Sheng J., Yang Y. Analysis of Epidemiological and Clinical Features in Older Patients With Coronavirus Disease 2019 (COVID-19) Outside Wuhan. Clin. Infect. Dis. 2020, 71 (15), 740–747. https://doi.org/10.1093/cid/ciaa242

      69. Guan W. J., Liang W. H., Zhao Y., Liang H. R., Chen Z. S., Li Y. M., Liu X. Q., Chen R. C., Tang C. L., Wang T., Ou C. Q., Li L., Chen P. Y., Sang L., Wang W., Li J. F., Li C. C., Ou L. M., Cheng B., Xiong S., Ni Z. Y., Xiang J., Hu Y., Liu L., Shan H., Lei C. L., Peng Y. X., Wei L., Liu Y., Hu Y. H., Peng P., Wang J. M., Liu J. Y., Chen Z., Li G., Zheng Z. J., Qiu S. Q., Luo J., Ye C. J., Zhu S., Cheng L. L., Ye F., Li S. Y., Zheng J. P., Zhang N. F., Zhong N. S., He J. X. China Medical Treatment Expert Group for COVID-19. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur. Respir. J. 2020, 55 (5), 2000547. https://doi.org/10.1183/13993003.00547-2020

      70. Mancia G., Rea F., Ludergnani M., Apolone G., Corrao G. Renin–Angiotensin–Aldosterone System Blockers and the Risk of Covid-19. N Engl. J. Med. 2020, V. 382, P. 2431–2440. https://doi.org/10.1056/NEJMoa2006923

      71. Mehra M. R., Desai S. S., Kuy S., Henry T. D., Patel A. N. Cardiovascular Disease, Drug Therapy, and Mortality in Covid-19. N Engl. J. Med. 2020, 382 (25), e102. https://doi.org/10.1056/NEJMoa2007621

      72. Reynolds H. R., Adhikari S., Pulgarin C., Troxel A. B., Iturrate E., Johnson S B., Hausvater A., Newman J. D., Berger J. S., Bangalore S., Katz S. D., Fishman G. I., Kunichoff D., Yu Chen, Ogedegbe G., Hochman J. S. Renin–Angiotensin–Aldosterone System Inhibitors and Risk of Covid-19. N Engl. J. Med. 2020, V. 382, P. 2441–2448. https://doi.org/10.1056/NEJMoa2008975

      73. Klok F. A., Kruip M. J. H. A., van der Meer N. J. M., Arbous M. S., Gommers D. A. M. P. J., Kant K. M., Kaptein F. H. J., van Paassen J., Stals M. A. M., Huisman M. V., Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, V. 191, P. 145–147. https://doi.org/10.1016/j.thromres.2020.04.013

      74. Varga Z., Flammer A. J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A. S., Mehra M. R., Schuepbach R. A., Ruschitzka F., Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020, 395 (10234), 1417–1418. https://doi.org/10.1016/S0140-6736(20)30937-5

      75. Yafei Wang, Ying Zhou, Zhen Yang, Dongping Xia, Yi Hu, Shuang Geng. Clinical Characteristics of Patients with Severe Pneumonia Caused by the SARS-CoV-2 in Wuhan, China. Clinical Investigations. 2020, V. 99, P. 649–657. https://doi.org/10.1159/000507940

      76. Onopchuk Yu. N. Homeostasis of functional respiratory system as a result of intersystem and system-medium informational interaction. Bioecomedicine. Uniform information space. Ed. by V. I. Gritsenko. Kyiv. 2001, P. 59–84. (In Russian).

      77. Onopchuk Yu. N. Homeostasis of the functional circulatory system as a result of intersystem and system-medium informational interaction. Bioecomedicine. Uniform information space. Ed. by V. I. Gritsenko. Kyiv. 2001, P. 85–104. (In Russian).

      78. Aralova N. I. Mathematical models of functional respiratory system for solving the applied problems in occupational medicine and sports. Saarbrücken: LAP LAMBERT Academic Publishing GmbH&Co, KG. 2019, 368 p. (In Russian). ISBN 978-613-4-97998-6

      79. Aralova N. I. Information technologies of decision making support for rehabilitation of sportsmen engaged in combat sport. J. Automation Information Sci. 2016, V. 3, P. 160–170. https://doi.org/10.1615/JAutomatInfScien.v48.i6.70

      80. Aralova N. I. Integrated mathematical model of self-organization of functional systems of the organism for imitation viral diseases. J. Automation Information Sci. 2020, V. 3, P. 127–137. https://doi.org/10.1615/JAutomatInfScien.v52.i3

      81. Beloshitsky P. V., Onopchuk Yu. N., Aralova N. I., Semchik T. A. Mathematic modeling of hypoxic states at heart ischemia. Physiol. J. 2004, 50 (3), 139–143. (In Russian).

      82. Liashko N. I., Onopchuck G. Yu. Pharmacological correction of organism state. Mathematical model and its analysis. Computer Mathematic. 2005, V. 1, P. 127–134. (In Russian).

      83. Aralova A. A., Aralova N. I., Kovalchuk-Khimyuk L. A., Onopchuk Yu. N. Automated information system for athletes functional diagnostics. Control systems and machines. 2008, V. 3, P. 73–78. (In Russian).

      84. Aralova N. I., Shakhlina L. Ya.-G., Futornyi S. M., Kalytka S. V. Information Technologies for Substantiation of the Optimal Course of Interval Hypoxic Training in Practice of Sports Training of Highly Qualified Sportswomen. J. Automat. Inf. Sci. https://doi.org/10.1615/JAutomatInfScien.v52.i1.50


 

Additional menu

Site search

Site navigation

Home Archive 2021 № 4 MATHEMATICAL MODEL FOR THE INVESTIGATION OF HYPOXIC STATES IN THE HEART MUSCLE AT VIRAL DAMAGE N. I. Aralova, O. M. Klyuchko, V. I. Mashkin, I. V. Mashkina, Paweł Radziejowski4, Maria Radziejowska

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.