Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2021 № 4 TWO-STAGE DEGRADATION OF SOLID ORGANIC WASTE AND LIQUID FILTRATE V. M. Hovorukha, O. A. Havryliuk, I. O. Bida, Ya. P. Danko, O. V. Shabliy, G. V. Gladka, L. S. Yastremska, O. B. Tashyrev
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta V. 14, No 4, 2021
Р. 70-79, Bibliography 42, English
Universal Decimal Classification: 579.695
https://doi.org/10.15407.biotech14.04.070

TWO-STAGE DEGRADATION OF SOLID ORGANIC WASTE AND LIQUID FILTRATE

V. M. Hovorukha, O. A. Havryliuk, I. O. Bida, Ya. P. Danko, O. V. Shabliy, G. V. Gladka, L. S. Yastremska, O. B. Tashyrev

Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv

The accumulation of solid and liquid organic waste requires their treatment to develop energy biotechnologies and prevent environment pollution.

Aim. The goal of the work was to study the efficiency of the purification of the filtrate from dissolved organic compounds by aerobic oxidation and methane fermentation.

Methods. The standard methods were used to determine рН and redox potential (Eh), the gas composition, the content of short-chain fatty acids, the concentration of dissolved organic compounds counting to the total сarbon. The efficiency of two types of microbial metabolism for the degradation of soluble organic compounds of filtrate was compared.

Results. The aerobic oxidation was established to provide 1.9 times more efficient removal of dissolved organic compounds, compared with the anaerobic methane fermentation. However, it provided CH4 yield 1 L/dm3 of filtrate (сarbon concentration — 1071 mg/L). The necessity to optimize the methods for purifying filtrate to increase the efficiency of the process was determined.

Conclusions. The obtained results will be the basis to develop complex biotechnology providing not only the production of environmentally friendly energy H2 via the fermentation of solid food waste, but also the purification of filtrate to solve the ecological and energy (CH4 production) problem of society.

Key words: solid organic waste; soluble organic compounds; environmental biotechnologies; hydrogen; methane; fermentation; aerobic oxidation.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021

  • References
    • 1. Curry N., Pillay P. Biogas prediction and design of a food waste to energy system for the urban environment. Renewable Energy. 2012, V. 41, P. 200–209. https://doi.org/10.1016/j.renene.2011.10.019

      2. Pagliano G., Ventorino V., Panico A., Pepe O. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnol. Biofuels. 2017, 10 (1), 113137. https://doi.org/10.1186/s13068-017-0802-4

      3. Algapani D., Wang J., Qiao W., Su M., Goglio A., Wandera S. M., Jiang M., Pan X., Adani F., Dong R. Improving methane production and anaerobic digestion stability of food waste by extracting lipids and mixing it with sewage sludge. Biores. Technol. 2017, V. 244. https://doi.org/10.1016/j.biortech.2017.08.087

      4. Algapani D. E., Qiao W., Ricci M., Bianchi D., Wandera S. M., Adani F., Dong R. Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation. Renewable Energy. 2019, V. 130, P. 1108–1115, https://doi.org/10.1016/j.renene.2018.08.079

      5. Pagliaccia P., Gallipoli A., Gianico A., Montecchio D., Braguglia C. M. Single stage anaerobic bioconversion of food waste in mono and co-digestion with olive husks: Impact of thermal pretreatment on hydrogen and methane production. Int. J. Hydrogen Energy. 2016, 41 (2), 905–915. https://doi.org/10.1016/j.ijhydene.2015.10.061

      6. Paritosh K., Kushwaha S. K., Yadav M., Pareek N., Chawade A., Vivekanand V. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. BioMed. Res. Int. 2017, V. 2017, P. 1–19. https://doi.org/10.1155/2017/2370927

      7. Yasin N. H. M., Mumtaz T., Hassan M. A., Abd Rahman N. Food waste and food processing waste for biohydrogen production: A review. J. Environ. Management. 2013, V. 130, P. 375–385. https://doi.org/10.1016/j.jenvman.2013.09.009

      8. Uçkun Kiran E., Trzcinski A. P., Ng W. J., Liu Y. Bioconversion of food waste to energy: A review. Fuel. 2014, V. 134, P. 389–399, https://doi.org/10.1016/j.fuel.2014.05.074

      9. Cheng J., Ding L., Lin R., Yue L., Liu J., Zhou J., Cen K. Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: Effects of physiochemical properties and mix ratios on fermentation performance. Applied Energy. 2016, V. 184, P. 1–8, https://doi.org/10.1016/j.apenergy.2016.10.003

      10. Meena R. A. A., Banu J. R., Kannah R. Y., Yogalakshmi K. N., Kumar G. Biohythane production from food processing wastes – Challenges and perspectives. Biores. Technol. 2020, V. 298, P. 122449, https://doi.org/10.1016/j.biortech.2019.122449

      11. Hobbs S. R., Landis A. E., Rittmann B. E., Young M. N., Parameswaran P. Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: inoculum ratios. Waste Manag. 2018, V. 71, P. 612–617. https://doi.org/10.1016/j.wasman.2017.06.029

      12. Han W., Hu Y., Li S., Li F., Tang J. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate. Biores. Technol. 2016, V. 218, P. 589–594. hhttps://doi.org/10.1016/j.biortech.2016.07.009

      13. Han M. J., Behera S. K., Park H.-S. Anaerobic co-digestion of food waste leachate and piggery wastewater for methane production: statistical optimization of key process parameters. J. Chem. Technol. Biotechnol. 2012, 87 (11), 1541–1550. hhttps://doi.org/10.1002/jctb.3786

      14. Polprasert C. Organic Waste Recycling: Technology and Management Third Edition. IWA Publishing. 2007. https://library.oapen.org/handle/20.500.12657/30981

      15. Levin D. Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy. 2004, 29 (2), 173–185, https://doi.org/10.1016/S0360-3199(03)00094-6

      16. Show K. Y., Lee D. J., Tay J. H., Lin C. Y., Chang J. S. Biohydrogen production: Current perspectives and the way forward. Int. J. Hydrogen Energy. 2012, 37 (20), 15616–15631, https://doi.org/10.1016/j.ijhydene.2012.04.109

      17. Nanda S., Berruti F. A technical review of bioenergy and resource recovery from municipal solid waste. J. Hazardous Materials. 2021, V. 403, P. 123970. https://doi.org/10.1016/j.jhazmat.2020.123970

      18. Gottschalk G. Bacterial metabolism, 2nd Edition. New York: Springer-Verlag. 1986, 359 p. https://doi.org/10.1007/978-1-4612-1072-6

      19. Kleidon A., Lorenz R.D. Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Springer Science & Business Media. 2005, 264 p. https://doi.org/10.1007/b12042

      20. Kekacs D., Drollette B. D., Brooker M., Plata D. L., Mouser P. J. Aerobic biodegradation of organic compounds in hydraulic fracturing fluids. Biodegradation. 2015, 26 (4), 271–287, https://doi.org/10.1007/s10532-015-9733-6

      21. Thauer R. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiol. 1998, 144 (9), 2377–2406, https://doi.org/10.1099/00221287-144-9-2377

      22. Berezkin V. G., Drugov Y. S. Gas Chromatography in Air Pollution Analysis. 1st Edition. Elsevier. 1991, 210 p. Available: https://www.elsevier.com/books/gas-chromatography-in-air-pollution-analysis/berezkin/978-0-444-98732-7

      23. Suslova О., Govorukha V., Brovarskaya О., Matveeva N., Tashyreva H., Tashyrev O. Method for Determining Organic Compound Concentration in Biological Systems by Permanganate Redox Titration. Int. J. Bioautomation. 2014, 18 (1), 45–52. http://www.biomed.bas.bg/bioautomation/

      24. Ghimire A., Frunzo L., Pirozzi F., Trably E., Escudie R., Lens P., Esposito G. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy. 2015, V. 144, P. 73–95, https://doi.org/10.1016/j.apenergy.2015.01.045

      25. Hovorukha V., Tashyrev O., Matvieieva N., Tashyreva H., Havryliuk O., Bielikova O., Sioma I. Integrated Approach for Development of Environmental Biotechnologies for Treatment of Solid Organic Waste and Obtaining of Biohydrogen and Lignocellulosic Substrate. Environ. Res., Engineering and Management. 2018, 74 (4), 31–42. https://doi.org/10.5755/j01.erem.74.4.20723

      26. Hovorukha V., Tashyrev O., Havryliuk O., Iastremska L. High Efficiency of Food Waste Fermentation and Biohydrogen Production in Experimental-industrial Anaerobic Batch Reactor. The Open Agriculture J. 2020, 14 (1), 174186. https://doi.org/10.2174/1874331502014010174

      27. Tashyrev O., Govorukha V., Havryliuk O. The effect of mixing modes on biohydrogen yield and spatial pH gradient at dark fermentation of solid food waste. EEEP. 2017, P. 53–62, https://doi.org/10.32006/eeep.2017.2.5362

      28. Hovorukha V., Havryliuk O., Gladka G., Tashyrev O., Kalinichenko A., Sporek M., Dolhanczuk-Srodka A. Hydrogen Dark Fermentation for Degradation of Solid and Liquid Food Waste. Energies. 2021, 14 (7), https://doi.org/10.3390/en14071831

      29. Hovorukha V., Tashyrev O., Tashyreva H., Havryliuk O., Bielikova O., Iastremska L. Increase in efficiency of hydrogen production by optimization of food waste fermentation parameters. Energetika. 2019, 65 (1), 8594. https://doi.org/10.6001/energetika.v65i1.3977

      30. Ababouch L., Chaibi A., Busta F. F. Inhibition of Bacterial Spore Growth by Fatty Acids and Their Sodium Salts. J. Food Prot. 1992, 55 (12), 980–984. https://doi.org/10.4315/0362-028X-55.12.980

      31. Herrero A. A. End-product inhibition in anaerobic fermentations. Trends in Biotechnol. 1983, 1 (2), 49–53, https://doi.org/10.1016/0167-7799(83)90069-0

      32. Sivagurunathan P., Sen B., Lin C.-Y. Overcoming propionic acid inhibition of hydrogen fermentation by temperature shift strategy. Int. J. Hydrogen Energy. 2014, 39 (33), 19232–19241, https://doi.org/10.1016/j.ijhydene.2014.03.260

      33. Ziemiński K., Frąc M. Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. African J. Biotechnol. 2012, 11 (18). https://doi.org/10.5897/AJBX11.054

      34. Poeschl M., Ward S., Owende P. Environmental impacts of biogas deployment – Part II: life cycle assessment of multiple production and utilization pathways. J. Cleaner Production. 2012, V. 24, P. 184–201. https://doi.org/10.1016/j.jclepro.2011.10.030

      35. Wu X., Zhu J., Dong Ch., Miller C., Li Y., Wang L., Yao W. Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor. Int. J. Hydrogen Energy. 2009, 34 (16), 6636–6645, https://doi.org/10.1016/j.ijhydene.2009.06.058

      36. Ren N., Li J., Li B., Wang Y., Liu S. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int. J. Hydrogen Energy. 2006, 31 (15), 2147–2157, https://doi.org/10.1016/j.ijhydene.2006.02.011

      37. Zhang M.-L., Fan Y.-T., Xing Y., Pan C.-M., Zhang G.-S., Lay J.-J. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass and Bioenergy. 2007, 31 (4), 250–254, https://doi.org/10.1016/j.biombioe.2006.08.004

      38. Hawkes F. R., Hussy I., Kyazze G., Dinsdale R., Hawkes D. L. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy. 2007, 32 (2), 172–184. hhttps://doi.org/10.1016/j.ijhydene.2006.08.014

      39. Ike M., Inoue D., Miyano T., Liu T. T., Sei K., Soda S., Kadoshin Sh. Microbial population dynamics during startup of a full-scale anaerobic digester treating industrial food waste in Kyoto eco-energy project. Biores. Technol. 2010, 101 (11), 3952–3957, https://doi.org/10.1016/j.biortech.2010.01.028

      40. Kondusamy D., Kalamdhad A. S. Pre-treatment and anaerobic digestion of food waste for high rate methane production – A review. J. Environ. Chem. Engineering. 2014, 2 (3), 1821–1830, hhttps://doi.org/10.1016/j.jece.2014.07.024

      41. Ferry J. G. Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol. Rev. 1999, 23 (1), 13–38. https://doi.org/10.1111/j.1574-6976.1999.tb00390.x

      42. Karhadkar P. P., Audic J.-M., Faup G. M., Khanna P. Sulfide and sulfate inhibition of methanogenesis. Water Res. 1987, 21 (9), 1061–1066, https://doi.org/10.1016/0043-1354(87)90027-3


Normal 0 false false false RU X-NONE X-NONE

Ж-л "Biotechnologia Acta" Т. 14, № 4 , 2021

С. 70-79, библиогр. 42, англ.

УДК: 579.695

https://doi.org/10.15407.biotech14.04.070

ДВУХСТУПЕНЧАТАЯ ДЕГРАДАЦИЯ ТВЕРДЫХ ОРГАНИЧЕСКИХ ОТХОДОВ И ЖИДКОГО ФИЛЬТРАТА

В. M. Говоруха, O. A. Гаврилюк, И. А. Бида, Я. П. Данько, А. В. Шаблий,

Г. В. Гладка, Л. С. Ястремская, А. Б. Таширев

Институт микробиологии и вирусологии им. Д. К. Заболотного НАН Украины, Киев

Накопление твердых и жидких органических отходов требует их переработки для развития энергетических биотехнологий и предотвращения загрязнения окружающей среды.

Цель. Изучение эффективности очистки фильтрата от растворенных органических соединений с помощью аэробного окисления и метановой ферментации.

Методы. Для определения рН и окислительно-восстановительного потенциала (Eh), состава газа, содержания короткоцепочечных жирных кислот, концентрации растворенных органических соединений по общему карбону были использованы стандартные методы.

Результаты. Проведено сравнение эффективности двух типов микробного метаболизма для деградации растворимых органических соединений фильтрата. Установлено, что аэробное окисление обеспечило в 1,9 раза более эффективное удаление растворенных органических соединений по сравнению с анаэробной метановой ферментацией, однако она сделала возможным выход CH4 1 л/дм3 фильтрата (концентрация по карбону — 1 071 мг/л). Определена необходимость оптимизации методов очистки фильтрата для повышения эффективности процесса.

Выводы. Полученные результаты будут основой для разработки комплексной биотехнологии, обеспечивающей не только производство экологически чистого энергоносителя H2 путем сбраживания твердых пищевых отходов, но также очистку фильтрата для решения экологической и энергетической (продуцирование CH4) проблемы общества.

Ключевые слова: твердые органические отходы; растворимые органические соединения; экологические биотехнологии; водород; метан; ферментация; аэробное окисление.

 

Additional menu

Site search

Site navigation

Home Archive 2021 № 4 TWO-STAGE DEGRADATION OF SOLID ORGANIC WASTE AND LIQUID FILTRATE V. M. Hovorukha, O. A. Havryliuk, I. O. Bida, Ya. P. Danko, O. V. Shabliy, G. V. Gladka, L. S. Yastremska, O. B. Tashyrev

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.