Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2020 № 6 GASOMEDIATOR H2S IN THROMBOSIS AND HEMOSTASIS Druzhyna Nadiya
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta V. 13, No 6, 2020
Р. 24-29, Bibliography 46, English
Universal Decimal Classification: 612.17
https://doi.org/10.15407/biotech13.06.024

GASOMEDIATOR H2S IN THROMBOSIS AND HEMOSTASIS

Druzhyna Nadiya

Department of Pediatrics, University of Texas Medical Branch, Galveston, USA

This review was aimed to briefly summarize current knowledge of the biological roles of gasomediator H2S in hemostasis and cardiovascular diseases. Since the discovery that mammalian cells are enzymatically producing H2S, this molecule underwent a dramatic metamorphosis from dangerous pollutant to a biologically relevant mediator. As a gasomediator, hydrogen sulfide plays a role of signaling molecule, which is involved in a number of processes in health and disease, including pathogenesis of cardiovascular abnormalities, mainly through modulating different patterns of vasculature functions and thrombotic events. Recently, several studies have provided unequivocal evidence that H2S reduces blood platelet reactivity by inhibiting different stages of platelet activation (platelet adhesion, secretion and aggregation) and thrombus formation. Moreover, H2S changes the structure and function of fibrinogen and proteins associated with fibrinolysis. Hydrogen sulfide regulates proliferation and apoptosis of vascular smooth muscle cells, thus modulating angiogenesis and vessel function. Undoubtedly, H2S is also involved in a multitude of other physiological functions. For example, it exhibits anti-inflammatory effects by inhibiting ROS production and increasing expression of antioxidant enzymes. Some studies have demonstrated the role of hydrogen sulfide as a therapeutic agent in various diseases, including cardiovascular pathologies. Further studies are required to evaluate its importance as a regulator of cell physiology and associated cardiovascular pathological conditions such as myocardial infarction and stroke.

Key words:. hydrogen sulfide, gasomediator, hemostasis, thrombosis, fibrinolysis, platelets, cardiovascular diseases.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020

  • References
    • 1. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 2012, V. 92, P. 791‒896. https://doi.org/10.1152/physrev.00017.2011

      2. Mol.Cancer Res. 2006, V. 4, P. 9‒14.

      3. Nicholson R. A., Roth S. H., Jian Zheng A. Z. Inhibition of respiratory and bioenergetic mechanisms by hydrogen sulfide in mammalian brain. J. Toxicol. Environ. Health. 1998, V. 54, P. 491‒507. https://doi.org/10.1080/009841098158773

      4. Khan A. A., Schuler M. M., Prior M. G., Young S., Coppock R. W., Florence L. Z. Effects of hydrogen sulfide exposure on lung mitochondrial respiratory chain enzymes in rats. Toxicol. Appl. Pharmacol. 1990, V. 103, P. 482‒490. https://doi.org/10.1016/0041-008x(90)90321-k

      5. Dorman D. C., Moulin F. J. M., McManus B. E., Mahle K. C., James R. A., Struve M. F. Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentration in the rat brain, liver, lung, and nasal epithelium. Toxicol. Sci. 2002, V. 65, P. 18‒25. https://doi.org/10.1093/toxsci/65.1.18

      6. Li L., Rose P., Moore P. K. Hydrogen sulfide and cell signaling. Annu. Rev. Pharmacol. Toxicol. 2011, V. 51, P. 169‒187. https://doi.org/10.1146/annurev-pharmtox-010510-100505

      7. Mustafa A. K., Gadalla M. M., Snyder S. H. Signaling by gasotransmitters. Sci. Signal. 2009, 2 (68), re2. https://doi.org/10.1126/scisignal.268re2

      8. Wallace J. L., Wang R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat. Rev. Drug Discov. 2015, 14 (5), 329‒345. https://doi.org/10.1038/nrd4433

      9. Kabil O., Banerjee R. Enzymology of H2S biogenesis, decay and signaling. Antioxid. Redox Signal. 2014, V. 20, V. 770‒782. https://doi.org/10.1089/ars.2013.5339

      10. Kimura H. Production and physiological effects of hydrogen sulfide. Antioxid. Redox Signal. 2014, V. 20, P. 783‒793. https://doi.org/10.1089/ars.2013.5309

      11. Xia M., Chen L., Muh R. W., Li P. L., Li N. Production and actions of hydrogen sulfide, a novel gaseous bioactive substance, in the kidneys. J. Pharmacol. Exp. Ther. 2009, V. 329, P. 1056‒1062. https://doi.org/10.1124/jpet.108.149963

      12. Geng B., Yang J., Qi Y., Zhao J., Pang Y., Du J., Tang C. H2S generated by heart in rat and its effects on cardiac function. Biochem. Biophys. Res. Commun. 2004, V. 313, P. 362‒368. https://doi.org/10.1016/j.bbrc.2003.11.130

      13. Yang G., Wu L., Jiang B., Yang W., Qi J., Cao K., Meng Q., Mustafa A. K., Mu W., Zhang S., Snyder S. H., Wang R. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008, V. 322, P. 587‒590. https://doi.org/10.1126/science.1162667

      14. Zhao W., Zhang J., Lu Y., Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous K-ATP channel opener. EMBO J. 2001, V. 20, P. 6008‒6016. https://doi.org/10.1093/emboj/20.21.6008

      15. Abe K., Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 1996, V. 16, P. 1066‒1071. https://doi.org/10.1523/JNEUROSCI.16-03-01066.1996

      16. Kimura H. Signaling molecules: hydrogen sulfide and polysulfide. Antioxid. Redox Signal. 2015, V. 22, P. 362‒376. https://doi.org/10.1089/ars.2014.5869

      17. Li Q., Lancaster Jr. J. R. Chemical foundations of hydrogen sulfide biology. Nitric Oxide. 2013, V. 35, P. 21‒34. https://doi.org/10.1016/j.niox.2013.07.001

      18. Riahi S., Rowley C. N. Why can hydrogen sulfide permeate cell membranes? J. Am. Chem. Soc. 2014, V. 136, P. 15111‒15113. https://doi.org/10.1021/ja508063s

      19. Paul B. D., Snyder S. H. H2S: a novel gasotransmitter that signals by sulfhydration. Trends Biochem. Sci. 2015, V. 40, P. 687‒700. https://doi.org/10.1016/j.tibs.2015.08.007

      20. Whiteman M., Moore P. K. Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide. J. Cell. Mol. Med. 2009, V. 13, P. 488‒507. https://doi.org/10.1111/j.1582-4934.2009.00645.x

      21. Hogg P. J. Contribution of allosteric disulfide bonds to regulation of hemostatsis. J. Thromb. Haemost. 2009, 7 (Suppl. 1), 13‒16. https://doi.org/10.1111/j.1538-7836.2009.03364.x

      22. D’Emmanuele di Villa Bianca R., Mitidieri E., Donnarumma E., Tramontano T., Brancaleone V., Cirino G., Bucci M., Sorrentino R. Hydrogen sulfide-induced dual vascular effect involves arachidonic acid cascade in rat mesenteric arterial bed. J. Pharmacol. Exp. Ther. 2011, V. 337, P. 59‒64. https://doi.org/10.1124/jpet.110.176016

      23. Hosoki R., Matsuki N., Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun. 1997, V. 237, P. 527‒531. https://doi.org/10.1006/bbrc.1997.6878

      24. Mustafa A. K., Sikka G., Gazi S. K., Steppan J., Jung S. M., Bhunia A. K., Barodka V. M., Gazi F. K., Barrow R. K., Wang R., Amzel L. M., Berkowitz D. E., Snyder S. H. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ. Res. 2011, V. 109, P. 1259‒1268. https://doi.org/10.1161/CIRCRESAHA.111.240242

      25. Tang G., Yang G., Jiang B., Ju Y., Wu L., Wang R. H2S is an endothelium-derived hyperpolarizing factor. Antioxid. Redox. Signal. 2013, V. 19, P. 1634‒1646. https://doi.org/10.1089/ars.2012.4805

      26. Szabo C. Hydrogen sulfide and its therapeutic potential. Nat. Rev. Drug Discov. 2007, V. 6, P. 917‒935. https://doi.org/10.1038/nrd2425

      27. Roy A., Khan A. H., Islam M. T., Prieto M. C., Majid D. S. Interdependency ofcystathioneg-lyase and cystathioneb-synthase in hydrogen sulfide-induced blood pressure regulation in rats. Am. J. hypertens. 2012, V. 25, P. 74‒81. https://doi.org/10.1038/ajh.2011.149

      28. Cai W. J., Wang M. J., Moore P. K., Jin H. M., Yao T., Zhu Y. C. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc. Res. 2007, V. 76, P. 29‒40. https://doi.org/10.1016/j.cardiores.2007.05.026

      29. Coletta C., Papapetropoulos A., Erdelyi K., Olah G., Modis K., Panopoulos P., Asimakopoulou A., Gero D., Sharina I., Martin E., Szabo C. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation Proc. Natl. Acad. Sci. USA. 2012, V. 109, P. 9161‒9166. https://doi.org/10.1073/pnas.1202916109

      30. Jang H., Oh M.-Y., Kim Y.-J., Choi I.-Y., Yang H. S., Ryu W. S., Lee S. H., Yoon B. W. Hydrogen sulfide treatment induces angiogenesis after cerebral ischemia. J. Neorosci. Res. 2014, V. 92, P. 1520‒1528. https://doi.org/10.4103/1673-5374.158353

      31. Ono K., Akaike T., Sawa T., Kumagai Y., Wink D. A., Tantillo D. J., Hobbs A. J., Nagy P., Xian M., Lin J., Fukuto J. M. Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility. Free Radic. Biol. Med. 2014, V. 77, P. 82‒94. https://doi.org/10.1016/j.freeradbiomed.2014.09.007

      32. Predmore B. L., Lefer D. J., Gojon G. Hydrogen sulfide in biochemistry and medicine. Antioxid. Redox. Signal. 2012, V. 17, P. 119‒140. https://doi.org/10.1089/ars.2012.4612

      33. Xie Z. Z., Liu Y., Bian J. S. Hydrogen sulfide and cellular redox homeostasis. Oxid. Med. Cell Longev. 2016, P. 6043038. https://doi.org/10.1155/2016/6043038

      34. Yang G., Wu R., Wang R. Pro-apoptotic effect of endogenous H2Son human aorta smooth muscle cells. FASEB J. 2006, V. 20, P. 553‒555. https://doi.org/10.1096/fj.05-4712fje

      35. Grambow E., Mueller-Graf F., Delyagina E., Frank M., Kuhla A., Vollmar B. Effect of the hydrogen sulfide donor GYY4137 on platelet activation and microvascular thrombus formation in mice. Platalets. 2014, V. 25, P. 166‒174. https://doi.org/10.3109/09537104.2013.786823

      36. Zagli G., Patacchini R., Trevisani M., Abbate R., Cinotti S., Gensini G. F., Masotti G., Geppetti P. Hydrogen sulfide inhibits human platelet aggregation. Eur. J. Pharmacol. 2007, V. 559, P. 65‒68. https://doi.org/10.1016/j.ejphar.2006.12.011

      37. Nishikawa H., hayashi H., Kubo S., Tsubota-Matsunami M., Sekiguchi F., Kawabata A. Inhibition by hydrogen sulfide of rabbit platelet aggregation and calcium mobilization. Biol. Pharm. Bull. 2013, V. 36, P. 1278‒1282. https://doi.org/10.1248/bpb.b13-00018

      38. Morel A., Malinowska J., Olas B. Antioxidative properties of hydrogen sulfide may involve in its antiadhesive action on blood platelets. Clin. Biochem. 2012, 45 (18), 1678‒1682. https://doi.org/10.1016/j.clinbiochem.2012.08.025

      39. Morel A., Malinowska J., Olas B. Hydrogen sulfide changes adhesive properties of fibrinogen and collagen in vitro. Platelets. 2014, V. 25, P. 147‒149. https://doi.org/10.3109/09537104.2012.737490

      40. Pircher J., Fochler F., Czermak T., Kraemer B. F., Worne M., Sparatore A., Del Soldato P., Pohl U., Krotz E. Hydrogen sulfide-releasing aspirin derivative ACS14 exerts strong antithrombotic effects in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 2012, 32 (12), 2884‒2891. https://doi.org/10.1161/ATVBAHA.112.300627

      41. Kram L., Grambow E., Mueller-Graf F., Sorg H., Vollmar B. The antithrombotic effect of hydrogen sulfide is partly mediated by an upregulation of nitric oxide synthase. Thromb. Res. 2013, V. 132, e112-e117. https://doi.org/10.1016/j.thromres.2013.07.010

      42. Olas B., Kontek B. The possible role of hydrogen sulfide as a modulator of hemostatic parameters of plasma. Chem. Biol. Interact. 2014, V. 220, P. 20‒24. https://doi.org/10.1016/j.cbi.2014.06.001

      43. Marchi R., Carvajal Z., Weasel J. W. Comparison of the effect of different homocysteine concentrations on clot formation using human plasma and purified fibrinogen. Thromb. Haemost. 2008, V. 99, P. 451‒452. https://doi.org/10.1046/j.1538-7836.2003.00053.x.

      44. Quintana L. L., Oberholzer M. V., Kordich L., Lauricella A. M. Impaired fibrin gel permeability by high homocysteine levels. Thromb. Res. 2011, V. 127, P. 35‒38. https://doi.org/10.1097/01.mbc.0000187264.02317.e3

      45. Predmore B. L., Lefer D. J. Development of hydrogen sulfide-based therapeutics for cardiovascular diseases. J. Cardiovasc. Transl. Res. 2010, V. 3, P. 487‒498. https://doi.org/10.1007/s12265-010-9201-y

      46. Chuah S. C., Moore P. K., Zhu Y. Z. S-allylcystein mediates cardioprotection on an acute myocardial infarction rat model via hydrogen sulfide- mediated pathway. Am. J. Physiol. Heart Circ. Physiol. 2007, V. 293, H2693‒H2701. https://doi.org/10.1152/ajpheart.00853.2007



 

Additional menu

Site search

Site navigation

Home Archive 2020 № 6 GASOMEDIATOR H2S IN THROMBOSIS AND HEMOSTASIS Druzhyna Nadiya

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.