Biotechnologia Acta


  • Increase font size
  • Default font size
  • Decrease font size
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta V. 13, No 6, 2020
Р. 24-29, Bibliography 46, English
Universal Decimal Classification: 612.17


Druzhyna Nadiya

Department of Pediatrics, University of Texas Medical Branch, Galveston, USA

This review was aimed to briefly summarize current knowledge of the biological roles of gasomediator H2S in hemostasis and cardiovascular diseases. Since the discovery that mammalian cells are enzymatically producing H2S, this molecule underwent a dramatic metamorphosis from dangerous pollutant to a biologically relevant mediator. As a gasomediator, hydrogen sulfide plays a role of signaling molecule, which is involved in a number of processes in health and disease, including pathogenesis of cardiovascular abnormalities, mainly through modulating different patterns of vasculature functions and thrombotic events. Recently, several studies have provided unequivocal evidence that H2S reduces blood platelet reactivity by inhibiting different stages of platelet activation (platelet adhesion, secretion and aggregation) and thrombus formation. Moreover, H2S changes the structure and function of fibrinogen and proteins associated with fibrinolysis. Hydrogen sulfide regulates proliferation and apoptosis of vascular smooth muscle cells, thus modulating angiogenesis and vessel function. Undoubtedly, H2S is also involved in a multitude of other physiological functions. For example, it exhibits anti-inflammatory effects by inhibiting ROS production and increasing expression of antioxidant enzymes. Some studies have demonstrated the role of hydrogen sulfide as a therapeutic agent in various diseases, including cardiovascular pathologies. Further studies are required to evaluate its importance as a regulator of cell physiology and associated cardiovascular pathological conditions such as myocardial infarction and stroke.

Key words:. hydrogen sulfide, gasomediator, hemostasis, thrombosis, fibrinolysis, platelets, cardiovascular diseases.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020

  • References
    • 1. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 2012, V. 92, P. 791‒896.

      2. Mol.Cancer Res. 2006, V. 4, P. 9‒14.

      3. Nicholson R. A., Roth S. H., Jian Zheng A. Z. Inhibition of respiratory and bioenergetic mechanisms by hydrogen sulfide in mammalian brain. J. Toxicol. Environ. Health. 1998, V. 54, P. 491‒507.

      4. Khan A. A., Schuler M. M., Prior M. G., Young S., Coppock R. W., Florence L. Z. Effects of hydrogen sulfide exposure on lung mitochondrial respiratory chain enzymes in rats. Toxicol. Appl. Pharmacol. 1990, V. 103, P. 482‒490.

      5. Dorman D. C., Moulin F. J. M., McManus B. E., Mahle K. C., James R. A., Struve M. F. Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentration in the rat brain, liver, lung, and nasal epithelium. Toxicol. Sci. 2002, V. 65, P. 18‒25.

      6. Li L., Rose P., Moore P. K. Hydrogen sulfide and cell signaling. Annu. Rev. Pharmacol. Toxicol. 2011, V. 51, P. 169‒187.

      7. Mustafa A. K., Gadalla M. M., Snyder S. H. Signaling by gasotransmitters. Sci. Signal. 2009, 2 (68), re2.

      8. Wallace J. L., Wang R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat. Rev. Drug Discov. 2015, 14 (5), 329‒345.

      9. Kabil O., Banerjee R. Enzymology of H2S biogenesis, decay and signaling. Antioxid. Redox Signal. 2014, V. 20, V. 770‒782.

      10. Kimura H. Production and physiological effects of hydrogen sulfide. Antioxid. Redox Signal. 2014, V. 20, P. 783‒793.

      11. Xia M., Chen L., Muh R. W., Li P. L., Li N. Production and actions of hydrogen sulfide, a novel gaseous bioactive substance, in the kidneys. J. Pharmacol. Exp. Ther. 2009, V. 329, P. 1056‒1062.

      12. Geng B., Yang J., Qi Y., Zhao J., Pang Y., Du J., Tang C. H2S generated by heart in rat and its effects on cardiac function. Biochem. Biophys. Res. Commun. 2004, V. 313, P. 362‒368.

      13. Yang G., Wu L., Jiang B., Yang W., Qi J., Cao K., Meng Q., Mustafa A. K., Mu W., Zhang S., Snyder S. H., Wang R. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008, V. 322, P. 587‒590.

      14. Zhao W., Zhang J., Lu Y., Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous K-ATP channel opener. EMBO J. 2001, V. 20, P. 6008‒6016.

      15. Abe K., Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 1996, V. 16, P. 1066‒1071.

      16. Kimura H. Signaling molecules: hydrogen sulfide and polysulfide. Antioxid. Redox Signal. 2015, V. 22, P. 362‒376.

      17. Li Q., Lancaster Jr. J. R. Chemical foundations of hydrogen sulfide biology. Nitric Oxide. 2013, V. 35, P. 21‒34.

      18. Riahi S., Rowley C. N. Why can hydrogen sulfide permeate cell membranes? J. Am. Chem. Soc. 2014, V. 136, P. 15111‒15113.

      19. Paul B. D., Snyder S. H. H2S: a novel gasotransmitter that signals by sulfhydration. Trends Biochem. Sci. 2015, V. 40, P. 687‒700.

      20. Whiteman M., Moore P. K. Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide. J. Cell. Mol. Med. 2009, V. 13, P. 488‒507.

      21. Hogg P. J. Contribution of allosteric disulfide bonds to regulation of hemostatsis. J. Thromb. Haemost. 2009, 7 (Suppl. 1), 13‒16.

      22. D’Emmanuele di Villa Bianca R., Mitidieri E., Donnarumma E., Tramontano T., Brancaleone V., Cirino G., Bucci M., Sorrentino R. Hydrogen sulfide-induced dual vascular effect involves arachidonic acid cascade in rat mesenteric arterial bed. J. Pharmacol. Exp. Ther. 2011, V. 337, P. 59‒64.

      23. Hosoki R., Matsuki N., Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun. 1997, V. 237, P. 527‒531.

      24. Mustafa A. K., Sikka G., Gazi S. K., Steppan J., Jung S. M., Bhunia A. K., Barodka V. M., Gazi F. K., Barrow R. K., Wang R., Amzel L. M., Berkowitz D. E., Snyder S. H. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ. Res. 2011, V. 109, P. 1259‒1268.

      25. Tang G., Yang G., Jiang B., Ju Y., Wu L., Wang R. H2S is an endothelium-derived hyperpolarizing factor. Antioxid. Redox. Signal. 2013, V. 19, P. 1634‒1646.

      26. Szabo C. Hydrogen sulfide and its therapeutic potential. Nat. Rev. Drug Discov. 2007, V. 6, P. 917‒935.

      27. Roy A., Khan A. H., Islam M. T., Prieto M. C., Majid D. S. Interdependency ofcystathioneg-lyase and cystathioneb-synthase in hydrogen sulfide-induced blood pressure regulation in rats. Am. J. hypertens. 2012, V. 25, P. 74‒81.

      28. Cai W. J., Wang M. J., Moore P. K., Jin H. M., Yao T., Zhu Y. C. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc. Res. 2007, V. 76, P. 29‒40.

      29. Coletta C., Papapetropoulos A., Erdelyi K., Olah G., Modis K., Panopoulos P., Asimakopoulou A., Gero D., Sharina I., Martin E., Szabo C. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation Proc. Natl. Acad. Sci. USA. 2012, V. 109, P. 9161‒9166.

      30. Jang H., Oh M.-Y., Kim Y.-J., Choi I.-Y., Yang H. S., Ryu W. S., Lee S. H., Yoon B. W. Hydrogen sulfide treatment induces angiogenesis after cerebral ischemia. J. Neorosci. Res. 2014, V. 92, P. 1520‒1528.

      31. Ono K., Akaike T., Sawa T., Kumagai Y., Wink D. A., Tantillo D. J., Hobbs A. J., Nagy P., Xian M., Lin J., Fukuto J. M. Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility. Free Radic. Biol. Med. 2014, V. 77, P. 82‒94.

      32. Predmore B. L., Lefer D. J., Gojon G. Hydrogen sulfide in biochemistry and medicine. Antioxid. Redox. Signal. 2012, V. 17, P. 119‒140.

      33. Xie Z. Z., Liu Y., Bian J. S. Hydrogen sulfide and cellular redox homeostasis. Oxid. Med. Cell Longev. 2016, P. 6043038.

      34. Yang G., Wu R., Wang R. Pro-apoptotic effect of endogenous H2Son human aorta smooth muscle cells. FASEB J. 2006, V. 20, P. 553‒555.

      35. Grambow E., Mueller-Graf F., Delyagina E., Frank M., Kuhla A., Vollmar B. Effect of the hydrogen sulfide donor GYY4137 on platelet activation and microvascular thrombus formation in mice. Platalets. 2014, V. 25, P. 166‒174.

      36. Zagli G., Patacchini R., Trevisani M., Abbate R., Cinotti S., Gensini G. F., Masotti G., Geppetti P. Hydrogen sulfide inhibits human platelet aggregation. Eur. J. Pharmacol. 2007, V. 559, P. 65‒68.

      37. Nishikawa H., hayashi H., Kubo S., Tsubota-Matsunami M., Sekiguchi F., Kawabata A. Inhibition by hydrogen sulfide of rabbit platelet aggregation and calcium mobilization. Biol. Pharm. Bull. 2013, V. 36, P. 1278‒1282.

      38. Morel A., Malinowska J., Olas B. Antioxidative properties of hydrogen sulfide may involve in its antiadhesive action on blood platelets. Clin. Biochem. 2012, 45 (18), 1678‒1682.

      39. Morel A., Malinowska J., Olas B. Hydrogen sulfide changes adhesive properties of fibrinogen and collagen in vitro. Platelets. 2014, V. 25, P. 147‒149.

      40. Pircher J., Fochler F., Czermak T., Kraemer B. F., Worne M., Sparatore A., Del Soldato P., Pohl U., Krotz E. Hydrogen sulfide-releasing aspirin derivative ACS14 exerts strong antithrombotic effects in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 2012, 32 (12), 2884‒2891.

      41. Kram L., Grambow E., Mueller-Graf F., Sorg H., Vollmar B. The antithrombotic effect of hydrogen sulfide is partly mediated by an upregulation of nitric oxide synthase. Thromb. Res. 2013, V. 132, e112-e117.

      42. Olas B., Kontek B. The possible role of hydrogen sulfide as a modulator of hemostatic parameters of plasma. Chem. Biol. Interact. 2014, V. 220, P. 20‒24.

      43. Marchi R., Carvajal Z., Weasel J. W. Comparison of the effect of different homocysteine concentrations on clot formation using human plasma and purified fibrinogen. Thromb. Haemost. 2008, V. 99, P. 451‒452.

      44. Quintana L. L., Oberholzer M. V., Kordich L., Lauricella A. M. Impaired fibrin gel permeability by high homocysteine levels. Thromb. Res. 2011, V. 127, P. 35‒38.

      45. Predmore B. L., Lefer D. J. Development of hydrogen sulfide-based therapeutics for cardiovascular diseases. J. Cardiovasc. Transl. Res. 2010, V. 3, P. 487‒498.

      46. Chuah S. C., Moore P. K., Zhu Y. Z. S-allylcystein mediates cardioprotection on an acute myocardial infarction rat model via hydrogen sulfide- mediated pathway. Am. J. Physiol. Heart Circ. Physiol. 2007, V. 293, H2693‒H2701.


Additional menu

Site search

Site navigation


Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
for information: