Biotechnologia Acta


  • Increase font size
  • Default font size
  • Decrease font size
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta V. 13, No 1, 2020
Р. 15-29, Bibliography 38, English
Universal Decimal Classification: 631.461:633.57 + 631.461.5


О. V. Kyrychenko

Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine, Kyiv

The purpose of the work was to evaluate the symbiotic productivity of soybean‒rhizobium and wheat‒azotobacter phyto-bacterial systems under the action of N-acetyl-D-glucosamine (0.01 M; 0.1 M) in vitro on the cultures of nitrogen-fixing microorganisms Bradyrhizobium japonicum 634b and Azotobacter chroococcum Т79. We have used such indicators as plants biological and seed productivity, rhizobia nodulation ability and nitrogenase activity of soybean symbioses as well as wheat rhizosphere microbiota. It was shown that the biological activity of N-acetyl-D-glucosamine during incubation with soybean nodule bacteria had a higher level of realization of the rhizobia nodulation ability: plants were more actively infected (by 12%), a greater number of nodules were formed (1.2‒2.3 times) with their greater total mass per plant (1.4‒2.1 times) and the mass of each root nodule (1.2 times), as well as the nitrogen-fixing activity of the symbiosis (1.7 times) and the functional capacity of each morpho-structural symbiotic unit (1.4 times). It provided higher (by 14‒29%) seed productivity of this system as compared with the symbiosis formed by the rhizobia monoculture. Activation of basic physiological processes in wheat such as nitrogen fixation (the activity of the rhizosphere microbiota was increased by 1.1‒1.4 times) and photosynthesis (the content of chlorophylls in leaves was increased by 1.1‒1.2 times) with N-acetyl-D-glucosamine-modified azotobacter provided a higher level of realization of the productive potential of this system in comparison with both non-infected plants (by 15%) and the variant of seed inoculation with bacteria only (by 7%). While inoculants bacteria + glucosamine had positive effect on seed productivity of the symbiotic and associative systems, it was shown no significant change in the biological productivity of soybean and wheat plants.

So, the use of N-acetyl-D-glucosamine as an additional agent of carbohydrate nature in inoculants with soybean nodule bacteria and soil diazotrophs of Azotobacter genus led to a more complete realization of the symbiotic and productive potential of phyto-bacterial symbiosis and association when compared to using a diazotrophs only.

Our results indicated the possibility of practical use of acetylated glucose-containing aminosaccharide in the creation of complex inoculants based on nitrogen-fixing bacteria.

Key words: soybean-rhizobium symbiosis, wheat‒azotobacter association, N-acetyl-D-glucosamine, nodulation, nitrogen fixation, rhizosphere microbiota, chlorophyll, harvest.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020

  • References
    • 1. Isobe K., Ohte N. Ecological Perspectives on Microbes Involved in N-cycling. Microbes Environ. 2014, 29 (1), 4–16.

      2. Kyrychenko E. V. Crop Biotechnology. Nikolaev: Ilion. 2014, 436 p. (In Russian).

      3. Chebotar V. K., Malfanova N. V., Shcherbakov A. V., Ahtemova G. A., Borisov A. Y., Lugtenberg B., Tikhonovich I. A. Endophytic Bacteria in Microbial Preparations That Improve Plant Development (Review). Applied Biochem. Microbiol. 2015, 51 (3), 271–277.

      4. Shiro S., Matsuura S., Rina Saiki G., Sigue C., Yamamoto A., Umehara Y., Hayashi M., Saeki Y. Genetic Diversity and Geographical Distribution of Indigenous Soybean-Nodulating Bradyrhizobia in the United States. Appl. Environ. Biol. 2013, 79 (12), 3610–3618.

      5. Kyrychenko O. V. Market Analysis and Microbial Biopreparations Creation for Crop Production in Ukraine. Biotechnol. acta. 2015, 8 (4), 40–52.

      6. Kiriziy D. A., Vorobey N. A., Kots S. Ya. The Relationship of Nitrogen Fixation and Photosynthesis as the Main Components of the Production Process in Alfalfa. Russ. Plant Physiol. 2007, 54 (5), 666–671. (In Russian).

      7. Beneduzi A., Ambrosini A., Passaglia L. M. P. Plant-Growth-Promoting Rhizobacteria (PGPR): Their Potential as Antagonists and Biocontrol Agents. Genet. Mol. Biol. 2012, 35 (Suppl. 4), 1044–1051.

      8. Trivedi P., Pandey A., Palni L. M. S. Bacterial Inoculants for Field Applications under Mountain Ecosystem: Present Initiatives and Future Prospects. In: Bacteria in Agrobiology, Plant Probiotics; Ed. D. K. Maheshwari. Springer Berlin Heidelberg. 2012, P. 15–44.

      9. Djordjevic M., Mohd Radzman N., Imin N. Small-Peptide Signals That Control Root Nodule Number, Development and Symbiosis. J. Exp. Bot. 2015, 66 (17), 5171–5181.

      10. Chebotar V. K., Raphalskiy S. V., Aritkin A. G., Esion V. V. Efficiency of Combined Application of Microbiological Means for Soybean Cultivation. Dostizheniya nauki i tekhniki. APK. 2013, N 8, P. 23–25. (In Russian).

      11. Jabbarova D. P., Egamberdieva D., Davranov K., Jabbarov M. P. Restoration of Growth of Soybean Under Saline Conditions Due to Inoculation with Bradyrhizobium japonicum and Pseudomonas putida. Uzbek. Biol. J. 2013, N 5, P. 23–26.

      12. Kosenko L. V., Mykhalkiv L. M., Krugova E. D., Mandrovskaya N. M., Zatovskaya T. V., Kots S. Ya. Biological Activity of Sinorhizobium meliloti Glucan. Rus. J. Microbiol. 2003, 72 (5), 633–638. (In Russian).

      13. Antipchuk A. F., Kosenko L. V. The Influence of Lipopolysaccharides and Glucans From Two Rhizobium leguminosarum bv. viciae Strains on the Formation and Efficiency of Their Symbioses With Pea Plants. Rus. J. Microbiol. 2004, 73 (1), 51–55. (In Russian).

      14. Laus M. C., Logman T. J., Lamers, G. E., Van Brussel A. A., Carlson R. W., Kijne J. W. A Novel Polar Surface Polysaccharide from Rhizobium leguminosarum Binds Host Plant Lectin. Mol. Microbiol. 2006, 59 (6), 1704–1713.

      15. Mc Near Jr. D. H. The Rhizosphere. Roots, Soil and Everything in Between. Nat. Educ. Knowl. 2013, 4 (3), 1–20.

      16. Kyrychenko O. V. Study of Chemotaxis of Nodule Bacteria of Lupin to Organic Substances. Mikrobiol. Zh. 2005, 67 (3), 19–26. (In Russian).

      17. Bürgmann H., Meier S., Bunge M., Widmer F., Zeyer J. Effects of Model Root Exudates on Structure and Activity of a Soil Diazotroph Community. Environ. Microbiol. 2005, 7 (11), 1711–1724.

      18. Kyrychenko O. V. Biological Activity of Rhizosphere Soil Spring Wheat in Association with Bacteria Azotobacter chroococcum T79 Modified N-acetyl-D-glucoseamine. Microbiol. and Biothecnol. 2016, N 3, 30–42. (In Russian).

      19. Antypchuk A. F., Pilyashenko-Novokhatniy A. I., Evdokimenko T. M. Practicum on Microbiology. Kyiv: Manual. UniversityUkraine”. 2011, 156 p. (In Ukrainian).

      20. Sadovnikova Yu. N. Features of Cellular Responses of Azospirillum brasilense to the Interaction of Stress Factors and Wheat Lectin: Author. dis. ... cand. biol. sciences on a specialty 03.00.04 – biochemistry, 03.00.07, microbiology, Yu. N. Sadovnikova; Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov. 2009, 23 p. (In Russian).

      21. Denarie J. Maillet F., Poinsot V., Andre O., Becard G., Gueunier M., Cromer L., Haouy A., Giraudet D. Lipohitooligosaccharides Stimulating Arbuscular Mycorrhizal Symbiosis. Pat. W0 2010/049751 A1, W0 2010/049817 A2, W0 2010/049817 A3, CN 102215669 A, EP 2358194 A2, US 2011/0301032. France, Institute National De La Recherche Agronomique. Filing date 28.10.2009 (N CA 2740082); Pub. date 06.05.2010 (N CA 2740082 A1).

      22. Djordjevic M. A., Susanti A. B., Marmuse L., Driguez H., Samain E., Vauzeilles B., Beau J-M., Kordbacheh F., Rolfe B. G., Schwörer R., Daines A. M., Gresshoff P. M., Parish Ch. R. Lipo-Chitin Oligosaccharides, Plant Symbiosis Signalling Molecules That Modulate Mammalian Angiogenesis In Vitro. PLoS ONE (Public Library of Science). 2014, 9 (12), 112635.

      23. Iutynska G. O., Biliavska L. O., Kozyrytska V. E. Averkom-Nova Phyto-protective Biological Preparation for Plant Treatment. Pat. UA N 107972 С2, А 01N 63/02, А 01Р 3/00, А 01Р 5/00, С12N 1/20, С12 R 1/465. Ukraine, Institute of Microbiology and Virology im. Zabolotnogo NAS of Ukraine. Filing date 07.02.2013 (N а 2013 01463); Pub. date 10.03.2015. Bull. N 5 (N 107972 С2). (In Ukrainian).

      24. Кyrychenko O. V. The Effect of Glucose- and Galactose-Containing Monosaccharides on In Vitro Development of Bradyrhizobium japonicum. Silskohospodarska mikrobiolohia. 2017, N 25, P. 3–9. (In Ukrainian).

      25. Кyrychenko O. V. Change of the Wheat Lectin Activity and Degree of Its Interaction With Different Components of Compositions of Lectin Nature. Ukr. Biochem. J. 2006, 78 (6), 105–112. (In Ukrainian).

      26. Grodzinskiy A. M. Allelоpatiya Rasteniy i Pochvoutomlenie: Izbr. Tr. Kyiv: Naukova dumka. 1991, 432 p. (In Russian).

      27. State Register of Plant Varieties Suitable for Dissemination in Ukraine in 2018. Kyiv: Ministry of Agrarian Policy and Food of Ukraine. 447 p. (In Ukrainian).

      28. Hardy R. W. F., Burns R. C., Holsten R. D. Application of the Acetylene-Ethylene Assay for Measurement of Nitrogen Fixation. Soil. Biol. Biochem. 1973, 5 (1), 41–83.

      29. Hiscox J. D., Israelstam R. J. The Method for the Extraction of Chlorophyll from Leaf Tissue Without Maceration. Can. J. Bot. 1979, 57 (12), 1332–1334.

      30. Dospekhov B. A. Field experiment technique (Field experience). Moskva: Agropromizdat. 1985, 351 p. (In Russian).

      31. Malichenko S. M., Krugova O. D., Starchenkov Yu. P. Nitrogenase of the Pure Culture Rhizobium lupine and her Effect on the Metabolites of the Legume Plants Nodules. V Ukr. Biochem. Cong. (Kyiv, 1987): Abstracts (Ch. 1, P. 102–103). (In Russian).

      32. Kots S. Ya., Morgun V. V., Patyka V. Ph., Malichenko S. M., Mamenko P. N., Kiriziy D. A., Mykhalkiv L. M., Beregovenko S. K., Melnikova N. M. Biological nitrogen fixation: Legume-rhizobium symbiosis. Kiev: Logos. 2011, V. 2, 523 p. (In Russian).

      33. Kyrychenko O. V., Volkogon N. V., Kots S. Ya. Effect of Presowing Seed Treatment with N-acetyl-D-glucosamine on Auxin and Cytokinin Contents in Leaves of Spring Wheat. The 7th Congress of the Plant Physiology Island of Russia “Plant Physiology is the Fundamental Basis of Ecology and Innovative Biotechnologies”: Reports (Part 1, P. 331), Nizhny Novgorod: UNN im. N. I. Lobachevsky. 2011, Ch. 1., P. 331. (In Russian).

      34. Chernyadev I. I. The Protective Action of Cytokinins on the Photosynthetic Machinery and Productivity of Plants under Stress (Review). Appl. Biochem. Microbiol. 2009, 45 (4), 351–362 (In Russian).

      35. Tsavkelova E. A., Klimova S. Yu., Cherdyntseva T. A., Netrusov A. I. Hormones and Hormone-Like Substances of Microorganisms (Review). Appl. Biochem. Microbiol. 2006, 42 (3), 229–235 (In Russian).

      36. Dragovoz I. V., Leonova N. O., Biliavska L. O., Yavorska V. K., Iutynska G. O. Phytohormone Production by Some Free-Living and Symbiotic Soil Microorganisms. Dop. NAS Ukr. 2010, V. 12, P. 154–159 (In Ukrainian).

      37. Dragovoz I. V., Leonova N. O., Iutynska G. A. Phytohormones Synthesis by Bradyrhizobium japonicum Strains with Different Symbiotic Effectiveness. Mikrobiol. Zh. 2011, 73 (4), 29–35 (In Ukrainian).

      38. Kots S. Ya., Volkogon N. V., Gryschuk E. A. Ability of Strains and Tn5-mutants of Bradyrhizobium japonicum to Synthesize IAA and ABA In Vitro. Physiol. Biochem. Cultural Plant. 2010, 42 (6), 491–496 (In Russian).


Additional menu

Site search

Site navigation


Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
for information: