OPTIMIZATION OF HYDROLYSIS CONDITIONS OF WHEAT STRAW BY ENZYME PREPARATION FROM *Fennellia* sp. 2806

Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of
The aim of the work was to optimize the hydrolysis conditions of wheat straw by complex enzyme preparation from *Fennellia* sp. 2806 with endo-, exoglucanase, xylanase and β-glucosidase activities. Bioconversion of wheat straw was carried out by an enzyme preparation obtained from the culture filtrate of *Fennellia* sp. 2806. The two methods of statistical optimization of the experiment — the Plackett-Burman (determination of significant factors) and Box-Behnken (determination of optimal values of defined significant factors) methods were used consequentially to optimize the hydrolysis conditions. Endo-, exoglucanase, xylanase and β-glucosidase activities were assayed in enzyme preparation. Reducing sugars were determined by the modified Bertrand method. As a result of two-stage optimization of the bioconversion process of wheat straw by enzyme preparation from *Fennellia* sp. 2806, it was found that the highest reducing sugars values were formed at temperature 50 °C, pH 5.0, substrate concentration 100 mg/ml, endoglucanase activity — 0.012 u/mg substrate, process duration — 18 h and pre-treatment by 4.5% alkali solution with further exposure to a microwave irradiation 6 W/g WS for 10 min. So it was established that temperature, pH, substrate concentration, pre-treatment of wheat straw by alkali solution and microwave irradiation were the significant factors for the hydrolysis process of substrate by enzyme preparation from *Fennellia* sp. 2806. Reducing sugars concentration was increased 1.5–2.0 times compared with the results obtained for the native wheat straw.

Key words: wheat straw, optimization of hydrolysis conditions, bioconversion, enzyme preparation.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017

5. Lopez-Linares J.C., Romero I., Cara C., Ruis E., Moya M., Castro E. Bioethanol production from rapeseed straw at high solid loading with different process configuration. *Fuel*. 2014, 122, 112–118. https://doi.org/10.1016/j.fuel.2014.01.024

