IDENTIFICATION OF Psy1 GENE ALLELES RESPONSIBLE FOR CAROTENOID ACCUMULATION IN WHEAT GRAINS

O. V. Stepanenko, A. І. Stepanenko, Ye. V. Kuzminskiy, B. V. Morgun

1 Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of
The aim of the research was to select and optimize marker systems for identification of Psy1 genes alleles, which are responsible for different levels of carotenoid pigments accumulation in wheat grains, as well as to screen varieties for the selection of valuable genotypes. 162 wheat samples were analyzed by the polymerase chain reaction method. Among them, varieties and lines with different allelic states of Psy-A1 and Psy-B1 genes were identified. The Psy-D1 gene did not show any polymorphism. As a result, samples with valuable alleles of Psy1 genes, which potentially contain increased carotenoids content in grains, were selected.

Key words: Psy1 genes, carotenoids, molecular markers, Triticum aestivum.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017

2009, V. 120, P. 709–720.
https://doi.org/10.1007/s00122-009-1188-x

Functional relationships of phytoene synthase 1 alleles on chromosome 7A controlling flour
colour variation in selected Australian wheat genotypes.
Theor
Appl
Genet
https://doi.org/10.1007/s00122-011-1569-9

Quantitative trait loci for yellow pigment concentration and individual carotenoid compounds in durum wheat.
J. Cereal Sci

18. Stewart C. N., Via L. E.
A rapid CTAB DNA isolation technique useful for RAPD
fingerprinting and other PCR applications.
BioTechniques. 1993,
14 (5), 748–749.

Allelic variants at the Psy-A1 and Psy-B1 loci in durum wheat and their associations with grain yellowness.
Crop Science
https://doi.org/10.2135/cropsci2008.11.0651

Expression of the novel wheat gene TM20 confers enhanced cadmium tolerance to bakers' yeast.
Biol. Chem.
2008, 283 (23), 15893–15902.
https://doi.org/10.1074/jbc.M708947200

{/spoiler}