We have studied the effect of glucose deprivation on the expression of genes encoding for ubiquitin specific peptidases — USP and autophagy related 7 ATG7 in U87 glioma cells in relation to inhibition of inositol requiring enzyme-1 (IRE1). It was shown that glucose deprivation was downregulated the expression of USP1 and USP10 genes and up-regulated USP4 and USP25 genes in control (transfected by empty vector) glioma cells. At the same time, the expression
level of
USP14, USP22
and ATG7 genes in these cells did not significantly change upon glucose deprivation condition. Inhibition of IRE1 signaling enzyme function in U87 glioma cells modified effect of glucose deprivation on the expression of most studied genes. Therefore, glucose deprivation affected the expression level of most ubiquitin specific peptidases genes in relation to the functional activity of IRE1 enzyme, which controls cell proliferation and tumor growth as a central mediator of endoplasmic reticulum stress.

Ключові слова: mRNA expression, USP genes, IRE1 inhibition, glucose deprivation, U87 glioma cells.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2016

{spoiler title=References}

https://doi.org/10.1007/s00432-012-1193-3

USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance. Neuro Oncol.
2016, V. 18, P. 37–47.
https://doi.org/10.1093/neuonc/nov091

https://doi.org/10.1021/bi300845s

https://doi.org/10.1371/journal.pone.0038570

USP4 inhibits p53 and NF-κB through deubiquitinating and stabilizing HDAC2.
https://doi.org/10.1038/onc.2015.349

Ubiquitin specific protease 4 positively regulates the WNT/β-catenin signaling in colorectal cancer.
https://doi.org/10.1016/j.molonc.2015.06.006

The regulation of TGF-β/SMAD signaling by protein deubiquitination.
https://doi.org/10.1007/s13238-014-0058-8

MicroRNA-191 promotes pancreatic cancer progression by targeting USP10.
Tumour Bio.
https://doi.org/10.1007/s13277-014-2521-9

USP10 antagonizes c-Myc transcriptional activation through SIRT6 stabilization to suppress tumor formation.
Cell Rep.
2013, V. 5, P. 1639–1649.
https://doi.org/10.1016/j.celrep.2013.11.029

Tang C,

Liu R

Ubiquitin-specific protease 14 (USP14) regulates cellular proliferation and apoptosis in epithelial ovarian cancer.

Med. Oncol

2015, V. 32, P. 379.
https://doi.org/10.1007/s12032-014-0379-8

Xiao J,

Wang L,

Pan L,

Finley D,

Yuan J

Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system.

Elife

2015, V. 4, e10510.
https://doi.org/10.7554/eLife.10510

Pharmacol. Ther.

Res.
https://doi.org/10.1158/0008-5472.CAN-07-1705

35. Minchenko O. H., Kryvdiuk I. V., Minchenko D. O., Riabovol O. O., Halkin O. V. Inhibition of IRE1 signaling affects expression of a subset genes encoding for TNF-related factors and receptors and modifies their hypoxic regulation in U87 glioma cells.

High epiregulin expression in human U87 glioma cells relies on IRE1alpha and promotes autocrine growth through EGF receptor.

BMC Cancer

2013, V. 13, P. 597.

Inhibition of ERN1 modifies the hypoxic regulation of the expression of TP53-related genes in U87 glioma cells.

Endoplasm. Reticul. Stress Dis

https://doi.org/10.2478/ersc-2014-0001

Oxidized phospholipids stimulate angiogenesis via induction of VEGF, IL-8, COX-2 and ADAMTS-1 metalloprotease, implicating a novel role for lipid oxidation in progression and destabilization of atherosclerotic lesions.

https://doi.org/10.1161/01.RES.0000245485.04489.ee

Ubiquitin-specific protease 4 promotes

Intestinal inhibition of Atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth. *Nat. Cell. Biol.* 2015, V. 17, P. 1062–1073. https://doi.org/10.1038/ncb3206

47. Backer M. V., Backer J. M., Chinnaiyan P. Targeting the unfolded protein response in cancer therapy. *Meth. Enzymol.* 2011, V. 491, P. 37–56. https://doi.org/10.1016/B978-0-12-385928-0.00003-1
