IRE1 KNOCKDOWN MODIFIES GLUCOSE AND GLUTAMINE DEPRIVATION EFFECTS ON THE EXPRESSION OF PROLIFERATION RELATED GENES IN U87 GLIOMA CELLS

1 Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
2 Bohomolets National Medical University, Kyiv

We have studied the expression of genes encoding proliferation related factors and enzymes such as IL13RA2, KRT18, CD24, ING1, ING2, MYL9, BET1, TRAPPC3, ENDOG, POLG, TSFM
in U87 glioma cells upon glucose and glutamine deprivation in relation to inhibition of inositol requiring enzyme 1, a central mediator of endoplasmic reticulum stress. It was shown that glutamine deprivation leads to up-regulation of the expression of
BET1, MYL9, and MTIF2
genes and down-regulation of
CD24, ING2, ENDOG, POLG, and TSFM
genes in control (with native IRE1) glioma cells. At the same time, glucose deprivation enhances the expression of
MYL9
gene only and decreases –
ING1, ING2, and MTIF2
genes in control glioma cells. Thus, effect of glucose and glutamine deprivation on gene expressions in glioma cells is gene-specific. Inhibition of inositol requiring enzyme 1 by
\textit{dnIRE1}
significantly modifies the effect of both glutamine and glucose deprivation on the expression of most studied genes with different direction and magnitude, especially for
ING2, CD2, 4, and MTIF2
genes. Present study demonstrates that IRE1 knockdown modifies glucose and glutamine deprivation effects on the expression of proliferation related genes and possibly contributes to slower tumor growth of these glioma cells after inhibition of IRE1 signaling enzyme.

\textbf{Key words}: proliferation related genes expression, IRE1 inhibition, glucose and glutamine deprivation, glioma cells

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma.

Molecular mechanisms of IRE-1-mediated angiogenesis.

http://dx.doi.org/10.1615/IntJPhysPathophys.v5.i1.10

Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed
by synchronized HeLa cells.

Proc

Natl

Acad

Sci

U.S.A

Clem A.

L.

Telang S.

Chesney J.

6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27.

Cell

Death and Disease.

Payen L.

High epiregulin expression in human U87 glioma cells relies on IRE1alpha and promotes autocrine growth through EGF receptor.

H.
Endoplasmic reticulum stress and angiogenesis in cancer.
Int. J. Physiol. Pathophysiol.
http://dx.doi.org/10.1615/IntJPhysPathophys.v5.i3.90

Posttranscriptional regulation of PER1 underlies the oncogenic function of IREα. Cancer Res. 2013, 73 (15), 4732–4743. doi: 10.1158/0008-5472.CAN-12-3989.
IRE1 KNOCKDOWN MODIFIES GLUCOSE AND GLUTAMINE DEPRIVATION EFFECTS ON THE EXPRESSION OF PROLIFERATION RELATED GENES IN U87 GLIOMA CELLS

Wong C. H.

Chin A.

Girard L.

Behrens C.

Lam W.

L Lam S.

Minna J.D.

Wistuba I.

Gazdar A.

Hanash S.M.

A search for novel cancer/testis antigens in lung cancer identifies VCX/Y genes, expanding the repertoire of potential immunotherapeutic targets.
IRE1 KNOCKDOWN MODIFIES GLUCOSE AND GLUTAMINE DEPRIVATION EFFECTS ON THE EXPRESSION OF PROLIFERATION RELATED GENES IN U87 GLIOMA CELLS D. O. Tsymbal, D. O. Minchenko, O. O. Riabovol, O. O. Ratushna, O. H. Minchenko

Cancer Res

29. Parlato M., Souza-Fonseca-Guimaraes F., Philippart F., Misset B., Adib-Conquy M., Cavaillon J. M.
CD24-triggered caspase-dependent apoptosis via mitochondrial membrane depolarization and reactive oxygen species production of human neutrophils is impaired in sepsis.

Br. J. Cancer.

Decreased expression of myosin light chain MYL9 in stroma predicts malignant progression and poor biochemical recurrence-free survival in prostate cancer.
Med. Oncol.

ING1 induces apoptosis through direct effects at the mitochondria. Cell Death Dis

Tumour Biol

Down-regulation of miR-622 in gastric cancer promotes cellular invasion and tumor metastasis
by targeting ING1 gene.
World J. Gastroenterol.

PLoS ONE.
2011, 6 (6), E21065. doi: 10.1371/journal.pone.0021065.

Sci. Rep.
. 2014, V. 4, P. 5416. doi: 10.1038/srep05416.

37. Zhang T., Hong W. Ykt6 forms a SNARE complex with syntaxin 5, GS28, and Bet1 and participates in a late stage in endoplasmic reticulum-Golgi transport.
J. Biol. Chem.

DNA Cell Biol.

39. Linkowska K., Jawień A., Marszałek A., Malyarchuk B., Tońska K., Bartnik B.
IRE1 KNOCKDOWN MODIFIES GLUCOSE AND GLUTAMINE DEPRIVATION EFFECTS ON THE EXPRESSION OF PROLIFERATION RELATED GENES IN U87 GLIOMA CELLS D. O. Tsymbal, D. O. Minchenko, O. O. Riabovol, O. O. Ratushna, O. H. Minchenko

Mitochondrial DNA Polymerase γ Mutations and Their Implications in mtDNA Alterations in Colorectal Cancer. Ann. Hum. Genet

44. Minchenko D. O., Karbovskyi L. L., Danilovskyi S. V., Moenner M., Minchenko O. H. Effect of hypoxia and glutamine or glucose deprivation on the expression of retinoblastoma and
retinoblastoma-related genes in ERN1 knockdown glioma U87 cell line.

Am. J. Mol. Biol.

45. Bochkov V. N., Philippova M., Oskolkova O., Kadl A., Furnkranz A., Karabeg E., Breuss J.

Minchenko
O. H.

Mechtcheriakova
D.

Hohensinner
P.

Rychli
K.

Wojta
J.

Resink
T.

Binder
B. R.

Leitinger
N.

Oxidized phospholipids stimulate angiogenesis via induction of VEGF, IL-8, COX-2 and ADAMTS-1 metalloprotease, implicating a novel role for lipid oxidation in progression and destabilization of atherosclerotic lesions.

Circ.

Res.

46. Minchenko D. O., Danilovskyi S. V., Kryvdiuk I. V., Bakalets T. V., Yavorsky V. V., Sulik R. V.
IRE1 KNOCKDOWN MODIFIES GLUCOSE AND GLUTAMINE DEPRIVATION EFFECTS ON THE EXPRESSION OF PROLIFERATION RELATED GENES IN U87 GLIOMA CELLS D. O. Tsymbal, D. O. Minchenko, O. O. Riabovol, O. O. Ratushna, O. H. Minchenko

Hubenia
O. V.
,
Minchenko
O. H
.

Effect of glutamine and glucose deprivation on the expression of TP53, MDM2, USP7 and PERP genes in glioma U87 cells with IRE-1 knockdown.

2014,
2 (2), 13–8.

47. Minchenko D. O., Danilovskyi S. V., Kryvdiuk I. V., Hlushchak N. A., Kovalevska O. V., Karbovskyi L.

Acute L-glutamine deprivation affects the expression of TP53-related protein genes in U87 glioma cells.

Fiziol Zh.

{/spoiler}