TEST-SYSTEMS FOR MONITORING OF CORROSION-RELEVANT SULFATE-REDUCING BACTERIA USING REAL-TIME PCR ASSAY

D. R. Abdulina ¹, L. M. Purish ¹, G. A. Iutynska ¹, M. M. Nikitin ², A. G. Golikov ²

¹ Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
² LLC GenBit, Moscow, Russian Federation

The possibility of the designing test-systems for specific detection of corrosive-relevant sulfate-reducing bacteria using real-time PCR assay were investigated. This method of the
bacteria identification is based on the detection of the functional genes, encoding key enzymes of dissimilatory sulfate-reduction pathway, i.e. dissimilatory sulfite reductase α subunit \(dsrA \). It was established among the six test-systems specificity reveal only three designed on the base of \(Desulfotomaculum, Desulfovibrio, Desulfobulbus \) genera sequences. The most corrosive-relevant strain \(Desulfovibrio \) sp. UCM B-11503 \(dsrA \) gene detected more effectively (threshold cycle was 20,0), than less corrosive-relevant strains \(Desulfovibrio \) sp. UCM B-11504 (threshold cycle was 28,1) and for \(Desulfotomaculum \) sp. UCM B-11505 and \(Desulfomicrobium \) sp. UCM B-11506 were 24,9 and 23,1 cycles, respectively. Test-systems allowed identifying corrosive-relevant sulfate-reducing bacteria faster and more effective. This approach will serve as a base for monitoring of these bacteria for estimating corrosion sites on the high-level dangerous man-caused objects.

Key words: sulfate-reducing bacteria, dissimilatory sulfate-reduction genes, test-systems, real-time PCR.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

{spoiler title=References}

http://dx.doi.org/10.1016/S0723-2020(97)80005-7

http://dx.doi.org/10.1128/JB.183.5.1727-1733.2001

The method of diagnosis microbiota disbalance for different human biotopes and level of its severity.

Patent Russian Federation 2362808
. 27. 07. 2009.

http://dx.doi.org/10.1099/00221287-146-7-1693

http://dx.doi.org/10.1099/mic.0.2006/003152-0
http://dx.doi.org/10.1038/nrmicro1892

"Biotechnologia Acta" V. 9, No 1, 2016
DOI:
P. , Bibliography , English
Universal Decimal Classification: 579.63:577.29
The possibility of the designing test-systems for specific detection of corrosive-relevant sulfate-reducing bacteria using real-time PCR assay were investigated. This method of the bacteria identification is based on the detection of the functional genes, encoding key enzymes of dissimilatory sulfate-reduction pathway, i.e. dissimilatory sulfitreductase α subunit (dsrA). It was established among the six test-systems specificity reveal only three designed on the base of Desulfothermus, Desulfovibrio, Desulfohalobus genera sequences. The most corrosive-relevant strain Desulfovibrio sp. UCM B-11503 dsrA gene detected more effectively (threshold cycle was 20,0), than less corrosive-relevant strains Desulfovibrio sp. UCM B-11504 (threshold cycle was 28,1) and for Desulfotomaculum sp. UCM B-11505 and Desulfobulbus sp. UC B-11506 were 24,9 and 23,1 cycles, respectively. Test-systems allowed identifying corrosive-relevant sulfate-reducing bacteria faster and more effective. This approach will serve as a base for monitoring of these bacteria for estimating corrosion sites on the high-level dangerous man-caused objects.
Key words: sulfate-reducing bacteria, dissimilatory sulfate-reduction genes, test-systems, real-time PCR.