The possibility of the designing test-systems for specific detection of corrosive-relevant sulfate-reducing bacteria using real-time PCR assay were investigated. This method of the
bacteria identification is based on the detection of the functional genes, encoding key enzymes of dissimilatory sulfate-reduction pathway, i.e. dissimilatory sulfite reductase α subunit \textit{dsrA}. It was established among the six test-systems specificity reveal only three designed on the base of \textit{Desulfotomaculum, Desulfovibrio, Desulfobulbus} genera sequences. The most corrosive-relevant strain \textit{Desulfovibrio} sp. UCM B-11503 \textit{dsrA} gene detected more effectively (threshold cycle was 20.0), than less corrosive-relevant strains \textit{Desulfovibrio} sp. UCM B-11504 (threshold cycle was 28.1) and for \textit{Desulfotomaculum} sp. UCM B-11505 and \textit{Desulfomicrobium} sp. UCM B-11506 were 24.9 and 23.1 cycles, respectively. Test-systems allowed identifying corrosive-relevant sulfate-reducing bacteria faster and more effective. This approach will serve as a base for monitoring of these bacteria for estimating corrosion sites on the high-level dangerous man-caused objects.

\textbf{Key words}: sulfate-reducing bacteria, dissimilatory sulfate-reduction genes, test-systems, real-time PCR.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

http://dx.doi.org/10.1134/S0026261710010133

http://dx.doi.org/10.1111/j.1462-2920.2006.01122.x

http://dx.doi.org/10.1007/s00253-013-5152-y
(In Ukrainian).

2005, V. 34, P. 331–368.
http://dx.doi.org/10.1016/S0580-9517(04)34011-0

J. Bacteriol.

The method of diagnosis microbiota disbalance for different human biotopes and level of its severity.

 2008, V. 6, P. 441–454.
 http://dx.doi.org/10.1038/nrmicro1892

 Microbiology
(Mikrobiologiya)

2001. 70 (6),
378–384.
The possibility of the designing test-systems for specific detection of corrosive-relevant sulfate-reducing bacteria using real-time PCR assay were investigated. This method of the bacteria identification is based on the detection of the functional genes, encoding key enzymes of dissimilatory sulfate-reduction pathway, i.e. dissimilatory sulfitreductase α subunit (dsrA). It was established among the six test-systems specificity reveal only three designed on the base of Desulfotomaculum, Desulfovibrio, Desulfobulbus genera sequences. The most corrosive-relevant strain Desulfovibrio sp. UCM B-11503 dsrA gene detected more effectively (threshold cycle was 20.0), than less corrosive-relevant strains Desulfovibrio sp. UCM B-11504 (threshold cycle was 28.1) and for Desulfotomaculum sp. UCM B-11505 and Desultomicrobium sp. UC M B-11506 were 24.9 and 23.1 cycles, respectively. Test-systems allowed identifying corrosive-relevant sulfate-reducing bacteria faster and more effective. This approach will serve as a base for monitoring of these bacteria for estimating corrosion sites on the high-level dangerous man-caused objects.
Key words: sulfate-reducing bacteria, dissimilatory sulfate-reduction genes, test-systems, real-time PCR.