CURRENT TECHNOLOGIES OF AMMONIUM WITHDRAWAL FROM WASTEWATER

O. M. Shved, R. O. Petrina, O. Y. Karpenko, V. P. Novikov

"Biotechnologia Acta" v. 7, no 5, 2014
doi: 10.15407/biotech7.05.108
P. 108-113, Bibliography 31, Ukrainian.
Universal Decimal classification: 628:35
Lviv Polytechnic national University, Ukraine

The results of analysis of the current technologies, as well as their trends and developments in the field of wastewater treatment in Ukraine and the world are given. The legal documents and the system of state regulation and control in the field of sanitation and wastewater treatment in Ukraine have been analyzed. The information about government programs aimed at protecting the natural water bodies is also included. The global trends concerning development of biotechnology in the field of wastewater from nitrogen compounds have been investigated. The analysis of traditional (nitrification-denitrification) and the latest biotechnology wastewater from inorganic nitrogen has been done. Current status of the present key technologies of nitrogen removal from wastewater has been formulated. The main advantages and disadvantages of these biotechnologies are described. It was determined that a major problem in the field of sanitation and wastewater treatment in Ukraine is the usage of outdated technologies and regulatory documentation that is a consequence of the lack of sufficient funding for the sector and the low level of environmental awareness of the government and the population.

Key words: wastewater, nutrients, biological treatment.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

{spoiler title=References}

3. Shved O. M., Petrina R. O., Stadnytska N. Ye., Hubrii Z. V., Novikov V. P. Complex
biological treatment of polluted water and bioremediation of environment.

Proceedings of the VIII International Conference aRostim 2012

Microbial biotechnology: activities and future
. Kyiv: Nichlava

17. Van der Vleuten-Balkema A. J. Sustainable wastewater treatment, developing a
methodology and selecting promising systems (Doctoral dissertation). Available at:

http://dx.doi.org/10.5670/oceanog.2007.53

 R.
 L.
 van de Pas
 Schoonen K.
 T.
 Cabezas A.
 Ying Z.
 Schmid M.
 C.
 Kuypers M.
 M.

25. Bertino A. Study on one-stage partial nitritation-anammox in moving bed biofilm reactors: a sustainable nitrogen removal (Master thesis). Available at: http://www2.lwr.kth.se/Publikationer/PDF_Files/LWR_EX_11_05.pdf (accessed 14 October 2014)

