HEMATOPOIETIC PROGENITOR CELLS OF PLACENTAL AND UMBILICAL CORD BLOOD: IMMUNOPHENOTYPIC ANALYSIS AND DIFFERENTIATION POTENTIAL in vitro

Kuchma M. D. 1,2 , Shablii V. A. 1,2 , Kyryk V. M. 3 , Svitina A. N. 2 , Shablii Yu. N. 2 , Prokopets Yu. K. 2 , Indichenko T. M. 2 , Lukash L. L. 1 , Lobyntseva G. S. 2

1 Institute of Molecular Biology and Genetics, of the National Academy of Sciences of Ukraine, Kyiv
2 Institute of Cellular Therapy, Kyiv, Ukraine
The aim of the work was the comparative study of the character of differentiation of hematopoietic progenitor cells of the placenta and umbilical cord blood *in vivo* and their multipotent properties *in vitro*. The proposed methods were used for mononuclear cells isolation from umbilical cord blood, placental tissue and mature fetal chorion, of flow cytometry and of analysis of the potential for differentiation. We found that majority of hematopoietic progenitor cells both in mature placenta and umbilical cord blood remains uncommitted, however in placental tissue we found more amount of differentiated cells that include myeloid progenitor with a phenotype $CD34^+CD45^{low}CD33^+SSC^{low}$, later myeloid progenitors with a phenotype $CD34^+CD45^{low}CD14^+SSC^{low}$ (their content is significantly higher than in cord blood), erythroid progenitors with a phenotype $CD34^+CD45^{low}CD235^+SSC^{low}$ (their number significantly above than that in cord blood), B-lymphoid progenitors with a phenotype $CD34^+CD45^{low}CD19^+SSC^{low}$.
low

, T-lymphoid progenitors and Natural Killer Cells-progenitors with a phenotype CD34
+ CD45
low
CD7
+
SSC
low
, and also T-lymphocytes at the different stages of maturation with a phenotypes CD7
+ CD45
+ and CD7
+ CD45RA
+ CD45
+ respectively. Placental hematopoietic progenitor cells have similar potential for differentiation in vitro in comparison with cord blood ones. Presence of hematopoietic cells in placental tissue at different stages and lines of differentiation suggests that the placental hematopoiesis last during all term of gestation.

Key words: placental hematopoiesis, hematopoietic progenitor cells.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

{spoiler title=REFERENCES}

The human placenta is a hematopoietic organ during the embryonic and fetal periods of development.
Dev Biol.
2009, 327(1), 24–33.
http://dx.doi.org/10.1016/j.ydbio.2008.11.017

Human term placenta as a source of hematopoietic cells.
Exp. Biol. Med. (Maywood)
2009, 234(7), 813–823.
http://dx.doi.org/10.3181/0809-BC-262

4. Gaipa G., Coustan-Smith E., Todisco E., Maglia O., Biondi A., Campana D.
Characterization of CD34+, CD13+, CD33- cells, a rare subset of immature human hematopoietic cells.
Haematologica.

5. Carvalho J. M., Souza M. K., Buccheri V., Rubens C. V., Kerbauy J., Oliveira J. S.

CD34-positive cells and their subpopulations characterized by flow cytometry analyses on the bone marrow of healthy allogenic donors.
Sao Paulo Med J.
2009, 127(1), 12–18.
http://dx.doi.org/10.1590/S1516-31802009000100004

6. Terstappen L. W., Huang S., Safford M., Lansdorp P. M., Loken M. R.

Sequential Generations of Hematopoietic Colonies Derived From Single Nonlineage-Committed CD34+ CD38-
Progenitor Cells.

peripheral blood and bone marrow using multicolor flow cytometry.

Blood.

 , Chen A

 , Hamalainen E

 , I

 , Mikkola H

 , K.

 The first trimester human placenta is a site for terminal maturation of primitive erythroid cells. *Blood*.

 http://dx.doi.org/10.1182/blood-2010-04-279489

 , Norol F
A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis.

Blood.

2009, 114(8), 1506–1517.

http://dx.doi.org/10.1182/blood-2008-09-178863

The composition of CD34 subpopulations differs between bone marrow, blood and cord blood. *Bone Marrow Transplant.*

* C

, Hill B

, Neu S

, Knapp W

, Alitalo R

, Alitalo K

, Ullrich A

, Kanz L

, B ühring H
Functional and phenotypic characterization of cord blood and bone marrow subsets expressing FLT3 (CD135) receptor tyrosine kinase.

Leuk Lymphoma.

CD34-positive early stages of human T-cell differentiation.

Leuk Lymphoma.

Blood.
1991, 77(l), 64–68.

 + cells from normal human bone marrow, cord blood, peripheral blood, and mobilized peripheral blood from patients undergoing autologous stem cell transplantation. *Clin. Immunol. Immunopathol.*

31. Steen R., Tjønnfjord G. E., Egeland T. Comparison of the phenotype and clonogenicity of normal CD34

 C
 .
 , To L
 .
 B.
 Identification and comparison of CD34-positive cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry. *Blood.*

34 Carrasco J., Godelaine D., van Pel A., Boon T., van der Bruggen P. CD45RA on human CD8 T cells is sensitive to the time elapsed since the last antigenic stimulation.
Blood
http://dx.doi.org/10.1182/blood-2005-11-007237

Blood.
1987, 70(5), 1316–1324.

Burgess J.
Harvesting, characterization, and culture of CD34 + cells from human bone marrow, peripheral blood, and cord blood.
Blood
Cells

Cryopreservation human placental tissue as source of hematopoietic
Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development.