Pleurotus ostreatus (Jacq.) Kumm. CULTIVATION ON VEGETABLE WASTES

Krupodorova T. A., Barsteyn V. Yu, Peshuk L. V., Haschuk O. I., Kostenko E. E.

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta
V. 7, No 4, 2014

"Biotechnologia Acta" v. 7, no 4, 2014
doi: 10.15407/biotech7.04.092
P. 92-99, Bibliography 40, Ukrainian.
Universal Decimal classification: 582.284:664.3

Pleurotus ostreatus (Jacq.) Kumm. CULTIVATION ON VEGETABLE WASTES

Krupodorova T. A. ¹, Barsteyn V. Yu. ¹, Peshuk L. V. ², Haschuk O. I. ², Kostenko E. E. ²

¹Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Kyiv
²National University of Food Technologies, Kyiv, Ukraine
The aim of this work was the study of influence of cultivation substrates (agriculture wasters) on biomass accumulation, amino acid composition, polysaccharide content and sorption ability towards heavy metals for the obtained biomass of edible mushroom *P. ostreatus*.

The intensity of *P. ostreatus* biomass accumulation (18–24.1 g/L) and high conversion of substrates (33.3–44.6%) have shown prospects for *P. ostreatus* cultivation on new substrates such as wheat germ oil meal, CO$_2$-extraction waste — amaranth flour and rapeseed meal. The optimum concentration of selected substrates were 70 g in 1 liter of distilled water for wheat germ oil meal and amaranth flour, 60 g/l — for rapeseed meal. It was found 17 amino acids, including 9 essential ones in fungi biomass hydrolyzate. Significant influence of cultivation substrate on quantitative composition of amino acids has been established. To all biomass samples the prevalence of glutamic and aspartic acids, arginine among the nonessential amino-acids, leucine, lysine and cystine among the essential amino-acids were common. Endopolysaccharides content in mushroom biomass and exopolysaccharides in culture liquid were slightly different depending on the selected substrates. Sorption of heavy metals by *P. ostreatus* biomass was increased in series Hg$^{2+}$ < Pb$^{2+}$ < Cd$^{2+}$. High biological activity of the biomass as a source of important essential amino acids and endopolysaccharides as well as sorption capacity towards toxic ions of Pb$^{2+}$, Cd$^{2+}$, Hg$^{2+}$ were determined. It could be a good purpose for usage of *P. ostreatus* biomass as an ingredient in the composition of functional food or food for special purpose to enhance both: its nutritional value and excretion of heavy metals from the human body.

Key words: *Pleurotus ostreatus*, vegetable wastes, sorption of heavy metals.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

5. Kim S. W., Hwang H. J., Park J. P., Cho Y. J., Song C. H., Yun J. W. Mycelial growth and exo-

http://dx.doi.org/10.1046/j.1472-765x.2002.01041.x

by culinary-medicinal Shiitake mushroom
Lentinus edodes

(Berk.) Singer and

Pleurotus

(Fr.) P. Karst. species depending on carbon and nitrogen source.

Intern. J. Med. Mushr

doi

10.1615/IntJMedMushr.v6.i2.70.

http://dx.doi.org/10.1016/j.biortech.2006.11.059

Growth and laccase production by
Pleurotus ostreatus

in submerged and solid-state fermentation.

Appl. Microbiol. Biotechnol

9. Ufimseva O. V., Mironov P. V. The obtaining of biomass from the mycelia of oyster mushroom P 05/88 \textit{Pleurotus ostreatus} and sulfur-yellow polypore LS 1-06 \textit{Laetiporus sulphureus} in submerged condition.

\textit{Khvoinye}

Kor. J. Microbiol. Biotechnol

. 2009, 37(1), 85–89.

Pleurotus ostreatus cultivated in Nigeria.

Pleurotus ostreatus.

J. Agric. Sci. Technol. A.

2012, 2(11A), 1296–1306.

hyb-rids — promising producers of proteins.

Priroda Zah
Pleurotus ostreatus (Jacq.) Kumm. CULTIVATION ON VEGETABLE WASTES Krupodorova T. A., Barsteyn V. Yu, Peshuk L. V., Haschuk O. I, Kostenko E. E.

Pleurotus ostreatus

in submerged culture.
20. Petre M., Petre V. Environmental biotechnology for bioconversion of agricultural and
forestry wastes into nutritive biomass.

Enviromental biotechnology - new approaches and prospective applications

Petre M. (Ed.)

— Croatia: InTech

2013, P. 1–22.

http://dx.doi.org/10.5772/56068

Bioprocess development for large scale production of anticancer exopolysaccharide by

Pleurotus ostreatus

in submerged culture.
J. Appl. Sci

. 2010, V.

10,

P. 2523–2529

. doi
22. *Silva S.*, *Martins S.*, *Karmali A.*, *Rosa E.* Production, purification and characterisation of
polysaccharides from *Pleurotus ostreatus* with antitumor activity.

J. Sci. Food Agric

\textit{Intern. Immunopharmacol}.

. 2006, 6(8), 1287–1297.
immunomodulation in vivo.

Micologia

Aplicata Internacional

25. Refaie F. M., Esmat A. Y., Daba A. S., Osman W. M., Taha S. M. Hepatoprotective activity of polysaccharopeptides from

Pleurotus ostreatus

mycelium on thioacetamide — intoxicated mice.

Micolog

ia
Aplicata Internacional

Pleurotus ostreatus (Jacq.) Kumm. CULTIVATION ON VEGETABLE WASTES Krupodorova T. A., Barsteyn

Pleurotus sajor-caju

nutritional characteristics when cultivated in different lignocellulosic wastes.

Food Chem

http://dx.doi.org/10.1016/j.foodchem.2004.01.050

Food Technol. Biotechnol

Anal. Chem

. 1956, 28(3), 350–356. doi
31. Babitskaya V. G., Scherba V. V., Mitropolskaya N. Y., Bisko N. A. Exopolysaccharides of
some medicinal mushrooms production and composition.

Intern. J. Med. Mushr

(In Russian).

33. Gladyshev V. P., Levickaja S. A., Filippova L. M. Analytical chemistry of mercury. Moskva:
35. Kostenko E. E., Hristiansen M. G., Butenko E. N. Photometric determination of trace amounts of lead in drinking water using sulfonazo III.

Kh

imia i tehnologiiia vody.

38. Rovbel N. M., Sokolova N. E., Pehtereva V. S. The role of cell wall components in Basidiomycetes binding heavy metal ions.
{/spoiler}