ISOLATION AND CHARACTERIZATION OF INSULIN RECEPTOR OF PLASMA MEMBRANES OF RAT LIVER CELLS AT MODEL OF TYPE 2 DIABETES

T. I. Halenova, M. Y. Kuznetsova, O. M. Savchuk, L. I. Ostapchenko

Taras Shevchenko National University of Kyiv, Ukraine
The insulin receptor was isolated from the liver cell membranes of control and diabetic rats. The protein purity was controlled by electrophoresis and Western blot. The tyrosine kinase activity of the insulin receptor was investigated in the incubation medium in the presence of insulin (concentration range: from 10^{-11} M to 10^{-5} M). The basal tyrosine kinase activity of the insulin receptor (in the absence of insulin) was equal for the control and diabetic state. Maximal tyrosine kinase activity of the diabetic and control insulin receptor was observed at the insulin concentration of 10^{-8} M. Results indicate that type 2 diabetes did not cause the irregularities in the functioning of the insulin receptor that could be the reason of insulin resistance.

Key words: insulin receptor, insulin resistance, type 2 diabetes mellitus.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

{spoiler title=REFERENCES}

 http://dx.doi.org/10.1530/JME-11-0022

 http://dx.doi.org/10.1016/S0083-6729(08)00603-1

 http://dx.doi.org/10.1016/S0083-6729(08)00611-0

4. Sasaoka T., Kobayashi M. The functional significance of Shc in insulin signaling as a
substrate of the insulin receptor.

http://dx.doi.org/10.1507/endocrj.47.373

http://dx.doi.org/10.3389/fendo.2012.00034

http://dx.doi.org/10.4239/wjd.v1.i3.68

http://dx.doi.org/10.1677/JOE-09-0260

http://dx.doi.org/10.1016/0002-9343(81)90422-8

http://dx.doi.org/10.2337/diab.38.12.1579

http://dx.doi.org/10.3346/jkms.2012.27.5.565

30. Obermaier-Kusser B., White M. F., Pongratz D. E., Su Z., Ermel B., Muhlbacher C., Haring H. U. A defective intramolecular autoactivation cascade may cause the reduced kinase activity of the skeletal muscle insulin receptor from patients with non-insulin-dependent diabetes...