Extreme daily productivity values of microalgae culturing system with different orientation of the illuminated surface and under natural light were assessed. Calculations are made for natural light conditions around neighborhoods of Isfahan City (Iran). It is shown that if the efficiency factor of photosynthesis equals to 5%, limit values of productivity will be 38 grams of dry biomass per 1 m² of illuminated surface and 114 grams will be at efficiency of 15%. On basis of simple model understandings regarding the daily distribution of solar radiation, which arrives at the surface of the Earth, productivity of microalgae culturing system for its various orientations relative to the Sun at different photosynthetic efficiency was calculated during the summer half-year (from March 21 to September 21). It is shown that the limit (optimal) value of the yield at the efficiency of 15% will be about 18.5 kg of dry biomass per square meter of illuminated surface.

The results can be used to develop technologies for the production of industrially important compounds from microalgae.

Key words: microalgae, limit assessment of productivity of microalgae system, photobiosynthesis, total solar radiation.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

PRODUCTIVITY OF MICROALGAE SYSTEM CULTIVATION UNDER THE DAYLIGHT B. Zarei Darki, O. N. Korol, R. G. Gevorgiz

, September 2007, 14 p.

regime, photosynthetic efficiency, scale-up, and future prospects.

Biotechnol Bioeng
http://dx.doi.org/10.1002/bit.10468

Report prepared for Energy Biosciences Institute, Barkley, California, October

17. **Tooming, H. G. and Gulyayev, B. I.** Methods of measurement of photosynthetically active radiation.

Ekologia morya

19. **Dynamic maps, GIS data and analysis tools, solar maps. National renewable energy laboratory (NREL)**

20. **Renewable energy unit. European commission, Joint research center institute for energy.**

21. **Khromov S. P., Petrosyants M. A.** Meterology and climatology. _Moscow University Press_.

{/spoiler}