Diphtheria is a highly contagious life-threatening disease caused by the toxigenic strains of *Corynebacterium diphtheriae*, which are transformed by a bacteriophage carrying the toxin gene. Diphtheria causative agent and its major virulence factor diphtheria toxin are well studied, but outbreaks of disease still occur worldwide. Rapid development of new methods in immunology and molecular biology is currently leading to improvement of prophylaxis, diagnosis and treatment of diphtheria. This review highlights the microbiological, epidemiological and immunological aspects of diphtheria infection, role of diphtheria toxin and others virulence factors in diphtheria pathogenesis and role of humoral anti-toxic immunity in the protection against disease. Perspectives in development of new diagnostic tests, anti-diphtheria vaccines, immunobiological preparations and antidotes for prevention of diphtheria infection, and other anti-diphteria means was also discussed.

Key words: diphtheria, diphtheria toxin, immunity, diagnostic tests, vaccines, antidotes, recombinant proteins.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2008

{spoiler title=References}

 http://dx.doi.org/10.1086/315551
http://dx.doi.org/10.1016/S0248-8663(05)81481-X

http://dx.doi.org/10.1007/3-540-36583-4_5

http://dx.doi.org/10.1056/NEJM199203123261118

http://dx.doi.org/10.1086/315536

http://dx.doi.org/10.1086/315548

http://dx.doi.org/10.3412/jsb.55.55

10. Titov L. Genotypic and phenotypic characteristics of *Corynebacterium diphtheriae* strains isolated from patients in belarus during an epidemic period. *J. Clin. Microbiol*

19. Cerdeno-Tarraga A. M. The complete genome sequence and analysis of Coryne-bacterium diphtheriae
NCTC13129.
Nucleic Acids Res.
2003, 31(22), 6516–6523.
http://dx.doi.org/10.1093/nar/gkg874

20. Sangal V. Draft genome sequence of Corynebacterium diphtheriae biovar intermedius
NCTC 5011.
J. Bacteriol.
194, N 17, P. 4738.
http://dx.doi.org/10.1128/JB.00939-12

21. Trost E. Pangenomic study of Coryne-bacterium diphtheriae that provides insights into the
genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and
pneumonia.
J. Bacteriol.
194(12), 3199–3215.
http://dx.doi.org/10.1128/JB.00183-12

22. Bonnet J. M., Begg N. T. Control of diphtheria: guidance for consultants in communicable
disease control. World Health Organ-ization.

23. Wagner K. S. Diphtheria in the United Kingdom, 1986-2008: the increasing role of
Corynebacterium ulcerans.
Epidemiol Infect.
2010, 138(11), 1519–1530.
http://dx.doi.org/10.1017/S0950268810001895

24. Wagner K. S. Screening for Coryne-bacterium diphtheriae and Corynebacterium ulcerans
17(4), 519–525.

32. Bardsdale W. L., Pappenheimer A. M., Jr. Phage-host relationships in nontoxigenic and

http://dx.doi.org/10.1016/S0968-0004(99)01359-6

34. Boyd J., Oza M. N., Murphy J. R. Molecular cloning and DNA sequence analysis of a
diphtheria tox iron-dependent regulatory element (dtxR) from
Corynebacterium diphtheria.
http://dx.doi.org/10.1073/pnas.87.15.5968

35. White A. Structure of the metal-ion-activated diphtheria toxin repressor/tox operator
http://dx.doi.org/10.1038/28893

36. Kunkle C. A., Schmitt M. P. Analysis of a DtxR-regulated iron transport and siderophore
biosynthesis gene cluster in *Coryne-bacterium diphtheria.* *J. Bacteriol*
http://dx.doi.org/10.1128/JB.187.2.422-433.2005

37. Allen C. E., Schmitt M. P. HtaA is an iron-regulated hemin binding protein involved in the
utilization of heme iron in *Coryne-bacterium diphtheria.* *J. Bacteriol*
2009, N 191(8), 2638–2648.
http://dx.doi.org/10.1128/JB.01784-08

38. Zherebko N. N., Kopanitsa L. V., Romanyuk S. I. Sequences of tox-gene and regulatory
dtxr-gene in the non-toxigenic and toxigenic strains of
C. Diphtheriae.
http://dx.doi.org/10.1128/JCM.43.1.223-228.2005

http://dx.doi.org/10.1016/0195-6701(95)90033-0

http://dx.doi.org/10.1590/S0074-02762010000500018

50. Gomes D. L. *Corynebacterium diphtheriae* as an emerging pathogen in nephrostomy catheter-related infection: evaluation of traits associated with bacterial virulence.

55. Choe S. The crystal structure of diphtheria toxin. *Nature*. 1992, 357(6375), 216–222. http://dx.doi.org/10.1038/357216a0

56. Iwamoto R. Heparin-binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which up-regulates functional receptors and diphtheria toxin sensitivity. *EMBO J*. 1994, 13(10), 2322–2330.

69(6), 1051–1061.
http://dx.doi.org/10.1016/0092-8674(92)90623-K

http://dx.doi.org/10.1006/bbrc.1998.8953

60. Sandvig K., Olsnes S. Diphtheria toxin-induced channels in Vero cells selective for monovalent cations.

http://dx.doi.org/10.1016/S0041-0101(01)00165-9

http://dx.doi.org/10.3390/toxins5050958

Biochem. Soc. Trans. 2006, V. 34, Pt 1, P. 1–6.
http://dx.doi.org/10.1042/BST0340001

71. Ott L. *Corynebacterium diphtheriae* invasion-associated protein (DIP1281) is involved in cell surface organization, adhesion and internalization in epithelial cells.
BMC Microbiol . V. 10, P. 2.
http://dx.doi.org/10.1186/1471-2180-10-2

72. Kolodkina V., Denisevich T., Titov L. Identification of *Corynebacterium diphtheriae* gene involved in adherence to epithelial cells.
http://dx.doi.org/10.1016/j.meegid.2010.11.004

73. Sabbadini P. S. *Corynebacterium diphtheriae* 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in HEp-2 cells.
http://dx.doi.org/10.1016/j.micpath.2011.12.003

74. Moreira Lde O. Effects of iron limitation on adherence and cell surface carbohydrates of *Corynebacterium diphtheriae* strains.
http://dx.doi.org/10.1128/AEM.69.10.5907-5913.2003

http://dx.doi.org/10.1016/S1286-4579(00)01305-8

76. Bertuccini L., Baldassarri L., von Hunolstein C. Internalization of non-toxigenic *Corynebacterium*
erium diphtheriae
by cultured human respiratory epithelial cells.

Microb. Pathog.
2004, 37(3), 111–118.
http://dx.doi.org/10.1016/j.micpath.2004.06.002

77. Dos Santos C. S. Non-opsonic phagocytosis of homologous non-toxigenic and toxigenic Corynebacterium diphtheriae strains by human U-937 macrophages.

http://dx.doi.org/10.1111/j.1348-0421.2009.00179.x

78. Ott L. Induction of the NFkappa-B signal transduction pathway in response to Corynebacterium diphtheriae infection.

Microbiology

http://dx.doi.org/10.1126/science.182.4110.353

80. Quevillon M., Chagnon A. Microtissue culture test for the titration of low concentrations of diphtheria antitoxin in minimal amounts of human sera.

Appl. Microbiol.

J. Immunol. Methods
http://dx.doi.org/10.1016/S0022-1759(00)00273-8

86. *Von Hunolstein C.* European seroepidemiology network: standardisation of the results of diphtheria antitoxin assays. *Vaccine.* 2000, 18(28), 3287–3296. http://dx.doi.org/10.1016/S0264-410X(00)00125-0

89. *Miyamura K.* Micro cell culture method for determination of diphtheria toxin and antitoxin
http://dx.doi.org/10.1016/0092-1157(74)90016-X

http://dx.doi.org/10.1016/0092-1157(74)90015-8

http://dx.doi.org/10.1016/0092-1157(74)90038-9

http://dx.doi.org/10.1128/CVI.00096-10

Belg. Med. Soc
. 1959, V. 17, P. 447–468.

http://dx.doi.org/10.1007/BF02875702

http://dx.doi.org/10.1111/j.1699-0463.1997.tb05093.x

http://dx.doi.org/10.1016/0022-1759(95)00270-7

http://dx.doi.org/10.1016/0166-5173(89)90009-7

http://dx.doi.org/10.1128/CVI.05081-11

102. Boyden S. V. The adsorption of proteins on erythrocytes treated with tannic acid and subsequent hemagglutination by antiprotein sera. J. Exp. Med. 1951, 93(2), 107–120.

138. Gautret P., Wilder-Smith A. Vaccination against tetanus, diphtheria, pertussis and

152. McNeela E. A. A mucosal vaccine against diphtheria: formulation of cross reacting material (CRM(197)) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 responses following nasal delivery. Vaccine. 2000, 19(9–10), 1188–1198. http://dx.doi.org/10.1016/S0264-410X(00)00309-1

